• Title/Summary/Keyword: Pre-simulation

Search Result 1,180, Processing Time 0.033 seconds

Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder (72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석)

  • Mai, Viet-Chinh;Han, Sang Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.73-82
    • /
    • 2022
  • The study presents a three-dimensional approach to simulate the nonlinear behavior of a 72 m long Ultra High Performance Fiber Reinforced Concrete (UHPFRC) pre-stressed box girder for a pedestrian bridge in Busan, South Korea. The concrete damage plasticity (CDP) model is adopted to model the non-linear behavior of the UHPFRC material, in which the material properties are obtained from uniaxial compressive and tensile tests. The simulation model based on the proposed stress-strain curve is validated by the results of four-point bending model tests of a 50 m UHPFRC pre-stressed box girder. The results from the simulation models agree with the experimental observations and predict the flexural behavior of the 50 m UHPFRC pre-stressed box girder accurately. Afterward, the validated model is utilized to investigate the flexural behavior of the 72 m UHPFRC pre-stressed box girder. Here, the load-deflection curve, stress status of the girder at various load levels, and connection details is analyzed. The load-deflection curve is also compared with design load to demonstrate the great benefit of the slender UHPFRC box girder. The obtained results demonstrate the applicability of the nonlinear finite element method as an appropriate option to analyze the flexural behavior of pre-stressed long-span girders.

Effects of integrated simulation education among nursing students during the COVID-19 pandemic in Korea

  • Shon, Soonyoung;Moon, Kyoung Ja
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.38-47
    • /
    • 2021
  • The purpose of this study was to analyze the effectiveness of integrated simulations conducted by virtual simulation and in situ simulation among nursing college students during COVID-19. This study was conducted from July 7 to 9, 2020 and the participants included 126 fourth-year nursing college students. Integrated simulation consisted of virtual simulation, teledebriefing, pre-briefing, in situ simulation, and debriefing. The results showed that after the use of various simulation modules and the training of integrated simulations incorporating virtual and in situ simulation training, critical thinking (t=5.20, p=<0.001), clinical judgment (t=6.71, p=<0.001), and simulation effectiveness (t=3.53, p=0.001). These findings could help establish the direction for more diverse forms of simulation-based education and it should be conducted in future nursing simulation during this COVID-19 pandemic era.

A Study on the Heuristic-Based Yard Crane Scheduling Method Using Truck Arrival Information (트럭 도착 정보를 활용한 휴리스틱 기반 야드 크레인 스케줄링 방법)

  • Hwang, Sung-Bum;Jeong, Suk-Jae;Yoon, Sung-Wook
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.45-56
    • /
    • 2019
  • Literatures have considered mathematical model that change the job order of shipper for improving the operation time of yard crane. However, on the real site, it is impossible to change the job order decided according to the shipper's arrival order. Therefore, operation managers have been utilized the relatively simple strategy that job control is better but the process time of yard crane is longer due to the growth of yard crane's interference time and empty drive time. This study proposed a new yard-crane scheduling approach that decided the job order before the shipper's truck arrived the yard terminal. We utilize the Container Pre-Information Notice estimating the arrival time of truck. We developed the container terminal simulation model for validation of the effect of proposed scheduling approach. The results show that the proposed scheduling reduced the interference delay time and empty moving time of yard crane and shipper's truck delay time.

Hemodynamic Characteristics Affecting Restenosis after Percutaneous Transluminal Coronary Angioplasty with Stenting in the Angulated Coronary Stenosis

  • Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Roh, Hyung-Woon;Cho, Min-Tae;Suh, Sang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Backgrounds: The present study in angulated coronary stenosis was to evaluate the influence of velocity and wall shear stress (WSS) on coronary atherosclerosis, the changes of hemodynamic indices following coronary stenting, as well as their effect of evolving in-stent restenosis using human in vivo hemodynamic parameters and computed simulation quantitatively and qualitatively. Methods: Initial and follow-up coronary angiographies in the patients with angulated coronary stenosis were performed (n=80). Optimal coronary stenting in angulated coronary stenosis had two models: < 50 % angle changed(model 1, n=43), > 50% angle changed group (model 2, n=37) according to percent change of vascular angle between pre- and post-intracoronary stenting. Flow-velocity wave obtained from in vivo intracoronary Doppler study data was used for in vitro numerical simulation. Spatial and temporal patterns of velocity vector and recirculation area were drawn throughout the selected segment of coronary models. WSS of pre/post-intracoronary stenting were calculated from three-dimensional computer simulation. Results: Follow-up coronary angiogram demonstrated significant difference in the percent of diameter stenosis between two groups (group 1: $40.3{\pm}30.2$ vs. group 2: $25.5{\pm}22.5%$, p<0.05). Negative WSS area on 3D simulation, which is consistent with re-circulation area of velocity vector, was noted on the inner wall of post-stenotic area before stenting. The negative WSS was disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2 (p<0.01) Conclusions: The present study suggests that hemodynamic forces exerted by pulsatile coronary circulation termed as WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. Moreover, geometric change, such as angular difference between pre / post-intracoronary stenting might give proper information of optimal hemodynamic charateristics for vascular repair after stenting.

  • PDF

Effects of Stenting Shapes on the Wall Shear Stress in the Angulated Coronary Stenosis (협착된 관상동맥에 시술된 스텐트형상이 벽면 전단응력에 미치는 영향)

  • Cho, Min-Tae;Suh, Sang-Ho;Yoo, Sang-Sin;Keun, Huk-Moon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.219-222
    • /
    • 2001
  • The objective of the present study is to evaluate the effects of the stenting shapes on flow velocity and wall shear stress in angulated coronary stenosis by computer simulation. Coronary angiogram and Doppler ultrasound measurement in the patients with angulated coronary stenosis were obtained. Inlet wave velocity distribution obtained from in vivo intracoronary Doppler data was used for the numerical simulation. Spatial pattern of blood flow velocity and recirculation area were drawn through out the selected segment of coronary models. Wall shear stresses in the intracoronary stent models were calculated from three-dimensional computer simulation. A negative shear stress region, which is consistent with re-circulation area on flow pattern, was noted on the inner wall of post-stenotic area of pre-stenting model. The negative shear stress was disappeared after stenting. Shear stress in the post-stenting model was markedly reduced up to about two orders of magnitude compared to that of the pre-stenting model.

  • PDF

A Study on M&S Environment for Designing the Autonomous Reconnaissance Ground Robot (자율탐색 로봇 설계를 위한 M&S(Modeling & Simulation) 환경 연구)

  • Kim, Jae-Soo;Son, Hyun-Seung;Kim, Woo-Yeol;Kim, R. Young-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.127-134
    • /
    • 2008
  • An autonomous reconnaissance ground robot performs its duty in various different environments such as mountain-scape, desert and under-water through changing its shape and form according to the environment it is working in. Making a prototype robot for each environment requires extra cost and time. It is also difficult to modify the problem after production. In this paper, we propose the adoption of M&S(Modeling & Simulation) environment for the production and design of the autonomous reconnaissance ground robot. The proposed method on the M&S environment contributed to the more effective and less time consuming production of the robot through the Pre-Modeling and Pre-Simulation process. For example, we showed the design and implementation of the autonomous reconnaissance ground robot under the proposed environment and tools.

Development of Layer Object Simulation System for Construction Project based on Virtual Reality (가상현실기반 건설공사의 레이어 객체 시뮬레이션 시스템 구축 연구)

  • Kang, Leen-Seok;Ji, Sang-Bok;Kim, Seol-Gi;Moon, Jin-Seok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.957-960
    • /
    • 2007
  • The construction information used in the design and construction phases are being gradually changed by 3D objects based on virtual reality (VR). This study developed an algorithm and computerized system to visualize layer object simulation that can be used in the pre-design phase. Layer object simulation enables designer to review expecting problems, which can reappear in real construction site, by building construction structures in a VR system. This function can be used as an important tool of virtual construction system.

  • PDF

Equivalent Pre- Xenon-Oscillation Method for Core Transient Simulation (등가제논진동법을 이용한 노심천이현상의 모사계산)

  • Song, J.S.;Lee, C.K.;Lee, C.C.;Yoo, C.S.;Kim, Y.R.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.853-858
    • /
    • 1995
  • The initial condition of a core transient should be consistent with real core state for the simulation of the core tansient. The initial xenon distribution, which can not be measured in the core, has a significant effect on the transient with xenon dynamics. In the simulation of the transient starting from non-equilibrium xenon state, the accurate initialization of the non-equilibrium xenon distribution is essential for the prediction of the core transient behavior. In this study, a xenon initialization method to predict the core transient more accurately was developed through the equivalent pre-xenon-oscillation which represents the tenon oscillation before the transient and verified by the application of the simulation for a startup test of Yonggwang Unit 3.

  • PDF

Design and Performance Analysis of Pre-Distorter Including HPA Memory Effect

  • An, Dong-Geon;Lee, Il-Jin;Ryu, Heung-Gyoon
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.71-77
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) signals sutler serious nonlinear distortion in the nonlinear HPA(High Power Amplifier) because of high PAPR(Peak Average Power Ratio). Nonlinear distortion can be improved by a pre-distorter, but this pre-distorter is insufficient when the PAPR is very high in an OPFDM system. In this paper, a DFT(Discrete Fourier Transform) transform technique is introduced for PAPR reduction. It is especially important to consider the memory effect of HPA for more precise predistortion. Therefore, in this paper, we consider two models, the TWTA(Traveling-Wave Tube Amplifier) model of Saleh without a memory effect and the HPA memory polynomial model that has a memory effect. We design a pre-distorter and an adaptive pre-distorter that uses the NLMS(Normalized Least Mean Square) algorithm for the compensation of this nonlinear distortion. Without the consideration of a memory effect, the system performance would be degraded, even if the pre-distorter is used for the compensation of the nonlinear distortion. From the simulation results, we can confirm that the proposed system shows an improvement in performance.