• 제목/요약/키워드: Pre-engineering building system

검색결과 115건 처리시간 0.019초

Smart City 시공단계 시설물 통합품질관리 프로세스 제안 (Suggestion for Integrated Process Quality Control for Facility Management of Smart City at Construction Stage)

  • 박인우;김인한;최중식
    • 한국건축시공학회지
    • /
    • 제16권6호
    • /
    • pp.535-544
    • /
    • 2016
  • 정부차원에서 한국형 'K-Smart City'모델을 활용하여 건설과 ICT산업의 융합사업인 해외 Smart City시장 진출을 적극 추진하고 있다. Smart City사업의 특성상 시설물 시공품질과 ICT시스템 개발품질이 동시에 확보되어야 Smart City시설물의 품질향상이 가능하다. 그러나 Smart City사업 특성에 맞는 통합된 품질관리 프로세스 및 가이드가 미흡한 실정이다. 이로인해 국내 실증 프로젝트에서는 건설 품질관리와 ICT 품질관리가 분리된 형태로 관리되어 Smart City시공품질이 저하되는 문제점이 발생되고 있다. 본 연구에서는 Smart City프로젝트 구축단계의 시공품질 향상을 위하여 현장시공(통합운영센터 및 현장설비)과 ICT시스템 개발공정이 융합된 통합품질관리 프로세스를 연구하였다. Smart City사례 프로젝트에 본 연구에서 제안한 통합품질관리 프로세스를 적용한 결과, 시공검측시 시설물 부적합건 발생이 22% 감소하였고, ICT인프라 납품자재의 품질시험을 추가로 실시하여 18%의 부적합 사항을 설치전에 조치하여 시공품질이 향상되는 것을 확인하였다. 본 연구에서 제안한 통합품질관리 프로세스는 향후 Smart City 현장에 활용이 가능할 것으로 기대한다.

레디믹스트 콘크리트의 환경성적표지 현황 및 특성 분석 (Analysis of the Present Status and Characteristics of Environmental Product Declaration of Ready-mixed Concrete)

  • 김낙현;김광현;박원준;노승준
    • 한국건축시공학회지
    • /
    • 제22권2호
    • /
    • pp.137-148
    • /
    • 2022
  • 본 연구는 레디믹스트 콘크리트의 환경성적표지 현황 조사와 이를 통한 레디믹스트 콘크리트 규격, 생애주기, 권역별 탄소배출량 특성 분석을 목적으로 한다. 이를 위해 콘크리트 산업의 탄소배출량 산정이 요구되고 있는 관련 인증제도를 분석하고, 레디믹스트 콘크리트 제품의 탄소배출량 현황분석을 위해 전과정평가 기법에 기반한 EPD 인증을 받은 제품군을 대상으로 하여 레디믹스트 콘크리트의 활성화 정도를 분석하였다. 또한 레디믹스트 콘크리트 제품의 생애주기별 탄소배출량 분석, 규격별 탄소배출량 분석, 권역별 탄소배출량 분석을 수행하여 각 특성에 따른 탄소배출량 추이를 검토하였다. 분석결과 생애주기별 탄소배출량은 제조전단계가 99% 수준을 나타냈으며, 18MPa에서 40MPa로 증가할수록 탄소배출량도 증가하는 추세를 보였다. 단, 동일 규격이라고 하더라도 수도권의 탄소배출량이 남부지역 대비 높은 탄소배출량을 나타냈다.

GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가 (Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System)

  • 선창국;정충기
    • 한국지리정보학회지
    • /
    • 제11권2호
    • /
    • pp.38-50
    • /
    • 2008
  • 부지고유 지진 응답과 그에 따른 지진 재해는 지하 지질 및 지반 동적 특성에 따라 주로 영향을 받는다. 본 연구에서는 지진 응답의 신뢰성 높은 평가를 목적으로, 연구 영역을 포괄하는 확장 영역과 지표면의 지반-지식 자료 획득을 위한 추가 부지 방문 조사라는 새로운 개념을 도입하여 GIS 토대의 지반 정보 시스템(GTIS)을 개발하였다. 역사 지진 피해 기록이 많아 향후 지진 발생 가능성 높은 경주 지역에 대해 GIS 기반 GTIS를 구축하였다. 연구 지역인 경주를 대상으로 지반 특성 및 동적 물성을 대표하는 전단파속도($V_S$)를 평가하기 위한 종합적 지반 조사와 기존 지반 자료 수집을 실시하고 부지 방문 조사를 추가적으로 수행하였다. 경주 지역에 대한 GTIS 내에서 지구통계학적 크리깅 기법을 이용하여 지반 조사 자료로부터 연구 영역 전체의 공간 분포 지층과 $V_S$를 신뢰성 높게 예측하였다. GTIS 내에서 예측된 공간 지층 및 $V_S$를 토대로, 부지 효과에 따른 부지고유 지진 응답의 평가 지표인 부지 주기($T_G$)에 관한 지진 구역 지도를 경주 연구 지역에 대해 작성하였다. 경주의 공간 $T_G$ 분포 지도로부터 2 층에서 5 층 건물의 지진 취약도를 확인하였다. 본 연구에서는 GIS 기반 GTIS 내에서 $T_G$를 토대로 수행된 지진 구역화를 지진 재해 평가 및 저감을 위한 효율적 지역 대책 방안으로 제시하였다.

  • PDF

군중-제공 신호지도 작성 및 위치 추적 시스템의 설계 (Design of a Crowd-Sourced Fingerprint Mapping and Localization System)

  • 최은미;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권9호
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi 신호지도법은 실내 환경을 위한 효과적인 위치 추적 기술로 잘 알려져 있다. 하지만 이 기술은 주어진 공간 전역에 걸쳐 미리 구축된 대용량의 신호지도가 있어야 적용할 수 있다. 또한 이 기술을 적용하기 위해서는 환경이 변함에 따라 전문가에 의해 주기적으로 새로운 신호지도를 구축하거나 변경하는 작업이 필요하다. 최근 들어 이러한 문제점을 극복하기 위한 한 가지 방법으로서, 군중-제공 신호지도 작성 방식이 많은 연구자들의 관심을 모으고 있다. 이 방식은 다수의 자발적인 사용자들로 하여금 특정 공간에서 수집한 자신들의 신호지도를 다른 사람들과 함께 서로 공유할 수 있도록 해준다. 따라서 군중-제공 신호지도 방식을 이용하면 신호지도를 자동으로 최신의 상태로 변경할 수 있다. 하지만, 대부분의 군중-제공 신호지도 작성 시스템들에서는 사용자들이 자신의 위치를 스스로 판단하여 수작업으로 직접 입력하도록 요구하고 있다. 그 뿐만 아니라, 이들 시스템에서는 다수의 사용자들로부터 수집되는 신호지도들 중에서 오류가 있는 것들을 찾아내고 이들을 여과해주는 체계적인 메커니즘을 가지고 있지 않다. 본 논문에서는 군중-제공 신호지도 작성 및 위치 추적(CMAL) 시스템의 설계에 대해 소개한다. 본 논문에서 제안하는 시스템은 다수의 스마트폰 사용자들로부터 수집된 지역 신호지도들을 이용하여 자동으로 공유 신호지도를 구축/갱신할 수 있을 뿐만 아니라, 동시에 새로운 신호지도를 이용하여 각 스마트폰 사용자의 위치를 추적할 수 있는 기능을 제공한다. 본 시스템은 각 스마트폰에서 신호지도를 수집하는 다수의 클라이언트들과, 공유 신호지도 데이터베이스를 관리하는 중앙의 서버로 구성된다. 각 클라이언트에는 스마트폰 사용자의 실시간 위치를 추적하면서 동시에 지역 신호지도를 생성하는 파티클 필터-기반의 WiFi SLAM 엔진을 내장하고 있으며, 서버에는 공유 신호지도의 무결성 유지를 위한 가우시안 보간법 기반의 오류 여과 알고리즘을 채택하고 있다. 다양한 실험들을 수행한 결과를 통해, 본 논문에서 제안한 시스템의 높은 성능을 확인할 수 있었다.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • 제2권3호
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.