• 제목/요약/키워드: Pre-crack

검색결과 277건 처리시간 0.027초

선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템 (Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model)

  • 유진선;하윤석
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.

Fatigue life enhancement of defective structures by bonded repairs

  • Wang, Q.Y.;Kawagoishi, N.;Chen, Q.;Pidaparti, R.M.
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.277-286
    • /
    • 2004
  • Defective metallic components and structures are being repaired with bonded composite patches to improve overall mechanical and fatigue properties. In this study, fatigue crack growth tests were conducted on pre-cracked 7075/T6 Aluminum substrates with and without bonded Boron/epoxy patches. A considerable increase in the fatigue life and a decrease in the stress intensity factor (SIF) were observed as the number of patch plies increased. The experimental results demonstrate that the patch configurations and patch thickness can enhance fatigue life by order of magnitude. Quantitative comparisons between analytical and experimental data were made, and the analytical model based on a modified Rose's analytical solution appears to best estimate the fatigue life.

슬래브형 매스콘크리트 구조물의 온도균열제어 (Temperature Crack Control in Slab Type구s Mass Concrete Structures)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

Experimental study of the torsion of reinforced concrete members

  • Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.713-737
    • /
    • 2006
  • This paper presents the results of an experimental investigation on the behaviour of 56 reinforced concrete beams subjected to pure torsion. The reported results include the behaviour curves, the failure modes and the values of the pre-cracking torsional stiffness, the cracking and ultimate torsional moments and the corresponding twists. The influence of the volume of stirrups, the height to width ratios and the arrangement of longitudinal bars on the torsional behaviour is discussed. In order to describe the entire torsional behaviour of the tested beams, the combination of two different analytical models is used. The prediction of the elastic till the first cracking part is achieved using a smeared crack analysis for plain concrete in torsion, whereas for the description of the post-cracking response the softened truss model is used. A simple modification to the softened truss model to include the effect of confinement is also attempted. Calculated torsional behaviour of the tested beams and 21 beams available in the literature are compared with the experimental ones and a very good agreement is observed.

PFM APPLICATION FOR THE PWSCC INTEGRITY OF Ni-BASE ALLOY WELDS-DEVELOPMENT AND APPLICATION OF PINEP-PWSCC

  • Hong, Jong-Dae;Jang, Changheui;Kim, Tae Soon
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.961-970
    • /
    • 2012
  • Often, probabilistic fracture mechanics (PFM) approaches have been adopted to quantify the failure probabilities of Ni-base alloy components, especially due to primary water stress corrosion cracking (PWSCC), in a primary piping system of pressurized water reactors. In this paper, the key features of an advanced PFM code, PINEP-PWSCC (Probabilistic INtegrity Evaluation for nuclear Piping-PWSCC) for such purpose, are described. In developing the code, we adopted most recent research results and advanced models in calculation modules such as PWSCC crack initiation and growth models, a performance-based probability of detection (POD) model for Ni-base alloy welds, and so on. To verify the code, the failure probabilities for various Alloy 182 welds locations were evaluated and compared with field experience and other PFM codes. Finally, the effects of pre-existing crack, weld repair, and POD models on failure probability were evaluated to demonstrate the applicability of PINEP-PWSCC.

경취재료에 있어 압자압입시의 균열진전에 관한 연구 (Micro Cracking and Elastic/Plastic Transition Radii Associated with Indenting on Ceramics by Diamond Indenter)

  • Park, G.H.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.164-172
    • /
    • 1996
  • In hard and brittle materials as advanced ceramics indented by a hard indenter, the indenter's transition radius, was defined as critical radius which distinguishes the occurrence of the first plastic deformation from the elastic cracking as the first damaging event, is analytically and experimentally investigated. The analytical result is shown that the critical load, which not enlarge pre-existing cracks as the form of median crack beneath a indenter, is constant, and is determined by the order of $k_{IC}$$^{4}$ $P_{Y}$$^{3}$(where, $K_{IC}$ , $P_{Y}$are the fracture toughness of materials and the applied pressure by indenting, respectively). And the size of transiton radii were experimentally obtained with the similar values to the analytical results.lts..

  • PDF

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

Nondestructive crack detection in metal structures using impedance responses and artificial neural networks

  • Ho, Duc-Duy;Luu, Tran-Huu-Tin;Pham, Minh-Nhan
    • Structural Monitoring and Maintenance
    • /
    • 제9권3호
    • /
    • pp.221-235
    • /
    • 2022
  • Among nondestructive damage detection methods, impedance-based methods have been recognized as an effective technique for damage identification in many kinds of structures. This paper proposes a method to detect cracks in metal structures by combining electro-mechanical impedance (EMI) responses and artificial neural networks (ANN). Firstly, the theories of EMI responses and impedance-based damage detection methods are described. Secondly, the reliability of numerical simulations for impedance responses is demonstrated by comparing to pre-published results for an aluminum beam. Thirdly, the proposed method is used to detect cracks in the beam. The RMSD (root mean square deviation) index is used to alarm the occurrence of the cracks, and the multi-layer perceptron (MLP) ANN is employed to identify the location and size of the cracks. The selection of the effective frequency range is also investigated. The analysis results reveal that the proposed method accurately detects the cracks' occurrence, location, and size in metal structures.

항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구 (A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft)

  • 최형준;박성제
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.448-454
    • /
    • 2020
  • 본 연구는 항공기 운용 중 발생하는 구조결함의 원인을 규명하고 개선형상에 대한 구조 건전성을 확인하고자 한다. 항공기 균열은 Bulkhead 체결구조로서 연료탱크 경계 Web 파열로 인한 연료누유 현상에서 식별되었다. 균열의 특성을 확인하기 위해 파단면을 분석하였고 반복하중에 의해 균열이 진전되어 최종 파단으로 이어지는 피로파괴로 판단하였다. 또한 다중 시작점에서 균열이 시작되는 것으로 소재의 결함이 균열의 주요 원인으로 판단되지 않는다. 항공기 운용 중 발생하는 기동하중에 대한 균열 영향을 확인하기 위해 항공기 지상 및 비행시험을 통해 분석을 수행하였다. 항공기 운용 중 균열 부위의 하중 측정 데이터와 항공기 설계하중과의 비교를 통한 분석 결과 측정하중은 설계 대비 30% 수준으로 파손을 유발할 수준은 아니라고 판단하였다. 항공기 운용 시 진동하중의 원인으로 조립 및 단품 제작공차가 최대 0.06inch 발생할 수 있는 Gap을 검토하였고, 분석결과 균열부위에서 큰 응력인 약 32ksi가 발생하였다. 또한 Pre-Load에 의해 M.S.(Margin of Safety)가 +0.71에서 +0.34로 약 50%이상 감소되는 것으로 확인되어 항공기 설계 하중과 조합 시 균열 가능성이 급격히 증가하였다. 따라서 항공기 균열부위에 대하여 구조 보강 및 Gap 제거를 통해 결함을 개선하였다. 개선형상에 대하여 구조강도 해석 결과 Bulkhead는 허용응력 대비 M.S.가 약 +0.88이고 Fitting 형상은 약 +0.48로서 충분한 마진이 확보되었다. 또한 수명해석 결과 형상 개선 전 수명인 약3,600 시간 대비 개선형상은 약84,000 시간으로서 항공기 설계수명 대비 구조건전성을 확인하였다.