• 제목/요약/키워드: Pre-commissioning

검색결과 18건 처리시간 0.025초

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • 제15권4호
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

Simulation Methods Development for a Plant Unit Master Control Logic Using Simulink in MATLAB (매트랩 시뮬링크를 이용한 플랜트 유닛마스터 제어로직 시뮬레이션 기법 개발)

  • Yoon, Changsun;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제18권2호
    • /
    • pp.324-334
    • /
    • 2017
  • The simulators for a plant unit master control (UMC) developed by domestic or overseas researchers have been developed for operator-training purposes. UMC simulators normally constructed at the end of the plant construction, despite the UMC logics, should be simulated to pre-check many signal interfaces within the power generation systems. Because of the differences in construction schedule, it is difficult for logic designers or commissioning engineers to simulate the UMC logic during the design or commissioning stage. In this background, this paper proposes a simulation method that can be used easily by plant logic designers or operators in the MATLAB Simulink programming environment. The core of the UMC is realized with a unique simulation algorithm based on mathematical analysis and functional blocks combination. In addition, an integer-based configuration was proposed to realize the plant target value control for the equipment in the logic. With these simulation methods, functions, e.g., load distribution, high-low limitations, frequency compensation, etc. were simulated. The results showed that the plant UMC logic can be simulated in Simulink without a plant simulator. The various functions proposed in this paper can provide useful information about Simulink-based simulation design for plant logic designers or commissioning engineers during the power plant construction period.

100 kW급 용융탄산염 연료전지 발전시스템 개발

  • Im, Hui-Cheon;Kim, Do-Hyeong;Seo, Hye-Gyeong;Park, Seong-Yeon;An, Gyo-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.140-148
    • /
    • 2005
  • The molten carbonate fuel cell (MCFC) is endowed with the high potential especially in future electric power generation industry by its own outstanding characteristics. KEPCO (KEPRI) started a 100 kW MCFC system development program in 1993 and has been executed 100kW system develpilot plant successfully completed first phaseopment by 2005 on the basis of successful results of 25kW system development. In this program, the components and mechanical structure for 100 kW stack and system construction were completed on last year and now system pre - commissioning was being executed. A 100 kW MCFC power plant was constructed at the site of Boryeong Thermal Power Plant. A 100 kW MCFC system has characterized as a high pressure operation mode, CO2 recycle, and externally reforming power generation system. The 100 kW MCFC system consisted with stacks which was made by two 50 kW sub-stacks, 90 cells with 6,000 cm2 active area and BOP including a reformer, a recycle blower, a catalytic burner, an inverter, and etc. The system has been operated from 13th of September on this year and produced 50 kW AC under atmospheric pressure condition and expected to operate by the end of this year.

  • PDF

High Resolution Near Infrared Spectrum of NGC 7023

  • Le, Huynh Anh N.;Pak, Soojong;Lee, Hye-In;Lee, Jae-Joon;Nguyen-Luong, Quang;Kaplan, Kyle;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제39권2호
    • /
    • pp.93.1-93.1
    • /
    • 2014
  • The reflection nebula NGC 7023 is a typical example of a photodissociation region (PDR), which consists of high density molecular gas that is exposed to an intense UV radiation field. The source of the UV photons in NGC 7023 is the young pre-main-sequence Be star HD 200755. We present our near-infrared high-resolution (R ~ 40,000) spectrum of NGC 7023, covering a region of $1{\times}15$ arcseconds, observed during the commissioning runs of IGRINS (Immersion GRating near-INfrared Spectrometer). The spectrum shows many strong narrow emission lines that arise from the molecular rovibrational transitions of H2. From the intensity ratios between these H2 lines, we investigate physical conditions within the PDR such as the temperature, density, and pressure. The high spectral resolution of IGRINS allows us to resolve the velocity field of the PDR. In addition, we compare the IGRINS spectrum to Cloudy PDR model.

  • PDF

System Development of a 100 kW Molten Carbonate Fuel Cell IV(System commisioning for operation (100 kW급 용융탄산염 연료전지 시스템 개발 IV(MCFC 시스템 시운전))

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1681-1683
    • /
    • 2005
  • The molten carbonate fuel tell(MCFC) is endowed with the high potential especially in future electric power generation industry by its own outstanding characteristics. KEPCO(KEPRI) started a 100 kW MCFC system development program in 1993 and has been executed 100kW system develpilot plant successfully completed first phaseopment by 2005 on the basis of successful results of 25kW system development. In this program, the components and mechanical structure for 100 kW stack and system construction were completed on last year and now system pre-commissioning was being executed. A 100 kW MCFC power plant was constructed at the site of Boryeong Thermal Power Plant. A 100 kW MCFC system has characterized as a high pressure operation mode, $CO_2$ recycle, and externally reforming power generation system. The 100 kW MCFC system consisted with stacks which was made by two 50 kW sub-stacks, 90 cells with 6,000 cm2 active area and BOP including a reformer, a recycle blower, a catalytic burner, an inverter, and etc. The system will be operated under 3 atm pressure condition and expected to last over 5,000 hours by the end of this year.

  • PDF

Software-In-the-Loop based Power Management System Modeling & Simulation for a Liquefied Natural Gas Carrier (SIL 기반 액화천연가스운반선 전력관리시스템의 모델링 및 시뮬레이션)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제21권6호
    • /
    • pp.1218-1224
    • /
    • 2017
  • With the increasing risk in building liquefied natural gas carriers (LNGC), pre-simulation of various scenarios is required for system integration and safe operation. In particular, the power management system (PMS) is an important part of the LNGC; it works in tight integration with the power control systems to achieve the desired performance and safety. To verify and improve unpredicted errors, we implemented a simulation model of power generation and consumption for testing PMS based on software-in-the-loop (SIL) method. To control and verify the PMS, numeric and physical simulation modeling was undertaken utilizing MATLAB/Simulink. In addition, the simulation model was verified with a load sharing test scenario for a sea trial. This simulation allows shipbuilders to participate in new value-added markets such as commissioning, installation, operation, and maintenance.

The Liability of Participants in Commercial Space Ventures and Space Insurance (상업우주사업(商業宇宙事業) 참가기업(參加企業)의 책임(責任)과 우주보험(宇宙保險))

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • 제5권
    • /
    • pp.101-118
    • /
    • 1993
  • Generally there is no law and liability system which applies particulary to commercial space ventures. There are several international treaties and national statutes which deal with space ventures, but their impact on the liability of commercial space ventures has not been significant. Every state law in the United States will impose both tort and contract liability on those responsible for injuries or losses caused by defective products or by services performed negligently. As with the providers of other products and services, those who participate in commercial space ventures have exposure to liability in both tort and contract which is limited to the extent of the resulting damage The manufacturer of a small and cheap component which caused a satellite to fail to reach orbit or to operate nominally has the same exposure to liability as the provider of launch vehicle or the manufacturer of satellite into which the component was incorporaded. Considering the enormity of losses which may result from launch failure or satellite failure, those participated in commercial space ventures will do their best to limit their exposure to liability by contract to the extent permitted by law. In most states of the United States, contracts which limit or disclaim the liability are enforceable with respect to claims for losses or damage to property if they are drafted in compliance with the requirements of the applicable law. In California an attempt to disclaim the liability for one's own negligence will be enforceable only if the contract states explicitly that the parties intend to have the disclaimer apply to negligence claims. Most state laws of the United States will refuse to enforce contracts which attempt to disclaim the liability for gross negligence on public policy grounds. However, the public policy which favoured disclaiming the liability as to gross negligence for providers of launch services was pronounced by the United States Congress in the 1988 Amendments to the 1984 Commercial Space Launch Act. To extend the disclaimer of liability to remote purchasers, the contract of resale should state expressly that the disclaimer applies for the benefit of all contractors and subcontractors who participated in producing the product. This situation may occur when the purchaser of a satellite which has failed to reach orbit has not contracted directly with the provider of launch services. Contracts for launch services usually contain cross-waiver of liability clauses by which each participant in the launch agrees to be responsible for it's own loss and to waive any claims which it may have against other participants. The crosswaiver of liability clause may apply to the participants in the launch who are parties to the launch services agreement, but not apply to their subcontractors. The role of insurance in responding to many risks has been critical in assisting commercial space ventures grow. Today traditional property and liability insurance, such as pre-launch, launch and in-orbit insurance and third party liability insurance, have become mandatory parts of most space projects. The manufacture and pre-launch insurance covers direct physical loss or damage to the satellite, its apogee kick moter and including its related launch equipment from commencement of loading operations at the manufacture's plant until lift off. The launch and early orbit insurance covers the satellite for physical loss or damage from attachment of risk through to commissioning and for some period of initial operation between 180 days and 12 months after launch. The in-orbit insurance covers physical loss of or damage to the satellite occuring during or caused by an event during the policy period. The third party liability insurance covers the satellite owner' s liability exposure at the launch site and liability arising out of the launch and operation in orbit. In conclusion, the liability in commercial space ventures extends to any organization which participates in providing products and services used in the venture. Accordingly, it is essential for any organization participating in commercial space ventures to contractually disclaim its liability to the extent permitted by law. To achieve the effective disclaimers, it is necessary to determine the applicable law and to understand the requirements of the law which will govern the terms of the contract. A great deal of funds have been used in R&D for commercial space ventures to increase reliability, safety and success. However, the historical reliability of launches and success for commercial space ventures have proved to be slightly lower than we would have wished for. Space insurance has played an important role in reducing the high risks present in commercial space ventures.

  • PDF