• Title/Summary/Keyword: Pre-chamber

Search Result 163, Processing Time 0.02 seconds

Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components (핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축)

  • Bae, Young-Dug;Kim, Suk-Kwon;Lee, Dong-Won;Shin, Hee-Yun;Hong, Bong-Guen
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.318-330
    • /
    • 2009
  • A high heat flux test facility using a graphite heating panel was constructed and is presently in operation at Korea Atomic Energy Research Institute, which is called KoHLT-1. Its major purpose is to carry out a thermal cycle test to verify the integrity of a HIP (hot isostatic pressing) bonded Be mockups which were fabricated for developing HIP joining technology to bond different metals, i.e., Be-to-CuCrZr and CuCrZr-to-SS316L, for the ITER (International Thermonuclear Experimental Reactor) first wall. The KoHLT-1 consists of a graphite heating panel, a box-type test chamber with water-cooling jackets, an electrical DC power supply, a water-cooling system, an evacuation system, an He gas system, and some diagnostics, which are equipped in an authorized laboratory with a special ventilation system for the Be treatment. The graphite heater is placed between two mockups, and the gap distance between the heater and the mockup is adjusted to $2{\sim}3\;mm$. We designed and fabricated several graphite heating panels to have various heating areas depending on the tested mockups, and to have the electrical resistances of $0.2{\sim}0.5$ ohms during high temperature operation. The heater is connected to an electrical DC power supply of 100 V/400 A. The heat flux is easily controlled by the pre-programmed control system which consists of a personal computer and a multi function module. The heat fluxes on the two mockups are deduced from the flow rate and the coolant inlet/out temperatures by a calorimetric method. We have carried out the thermal cycle tests of various Be mockups, and the reliability of the KoHLT-1 for long time operation at a high heat flux was verified, and its broad applicability is promising.

Seed Dormancy Type and Germination Characteristics in Tiarella polyphylla D. Don Native to Korea (한반도 자생식물 헐떡이풀 종자의 휴면유형과 발아특성)

  • Choi, Han;Lee, Seung Youn;Rhie, Yong Ha;Lee, Jeong Ho;Kim, Sang Yong;Lee, Ki Cheol
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2018
  • Tiarella polyphylla D. Don is a native plant distributed only in Ulleung Island in Korea and has been traditionally used for medicinal purposes, although it is also used ornamentally. This study was conducted to determine the requirements for dormancy break and germination and to classify the type of seed dormancy. The experiments were performed with cold stratification (0 or 12 weeks at $5^{\circ}C$), warm stratification (0, 4, 8, or 12 weeks at $23^{\circ}C$, followed by 8 weeks at $5^{\circ}C$, and then incubation at $23^{\circ}C$), and $GA_3$ treatments (0, 10, 100, or 1000 mg/L). The treated seeds were incubated on aseptic media at room chamber ($23^{\circ}C$, a 16h photoperiod of fluorescent lamps with $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The seeds were dispersed in nature as underdeveloped embryos with no physical barrier to absorb water to prevent water absorption. However, the seeds did not germinate for 30 days after sowing without any pre-treatments. Thus, the seeds had morphological dormancy (MD) and physiological dormancy (PD). The final germination percentage following cold stratification (0 or 12 weeks) was 66.7% and 45.6%, respectively. The cold stratification delayed seed germination by about 3 weeks. In the warm stratification experiment (0, 4, 8, or 12 weeks), the final germination percentage was 21.1%, 27.8%, 41.1%, and 57.8%, respectively, 20 weeks after sowing. The embryos of the T. polyphylla seed grew in relatively warm temperatures ($23^{\circ}C$). $GA_3$ application overcame seed dormancy and promoted germination. Following $GA_3$ treatment (0, 10, 100, or 1000 mg/L), the final germination percentage was 33.3%, 45.0%, 42.5%, and 72.5%, respectively. These results suggest that the T. polyphylla seeds had non-deep simple morphophysiological dormancy (MPD) and $GA_3$ treatment could be used as a substitute for warm stratification for breaking seed dormancy. To our knowledge, this is the first report of seed dormancy characteristics of the genus Tiarella native to Korea.

Effect of Pre-harvest Irradiation of UV-A and UV-B LED in Ginsenosides Content of Ginseng Sprouts (새싹 인삼의 수확 전 UV-A 및 -B LED의 조사에 의한 진세노사이드의 영향)

  • Jang, Seong-Nam;Lee, Ga-Oun;Sim, Han-Sol;Bae, Jin-Su;Lee, Ae-Ryeon;Cho, Du-Yong;Cho, Kye-Man;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • This study was conducted to determine the changes in ginsenosides content according to additional UV-A, and UV-B LED irradiation before harvesting the ginseng sprouts. One-year-old ginseng seedlings (n=100) were transplanted in a tray containing a ginseng medium. The ginseng sprouts were grown for 37 days at a temperature of 20℃ (24h), a humidity of 70%, and an average light intensity of 80 µmol·m-2·s-1 (photoperiod; 24h) in a container-type plant factory. Ginseng sprouts were then transferred to a custom chamber equipped with UV-A (370 nm; 12.90 W·m-2) and UV-B (300 nm; 0.31 W·m-2) LEDs and treated for 3 days. Growth parameters and ginsenoside contents in shoot and root were conducted by harvesting on days 0 (control), 1, 2, and 3 of UV treatments, respectively. The growth parameters showed non-significant differences between the control and the UV treatments (wavelengths or the number of days). Ginsenoside contents of the shoot was highly improved by 186% in UV-A treatment compared to the control in 3 days of the treatment time. The ginsenoside contents of the roots was more improved in UV-A 1-day treatment and UV-B 3-day treatment, compared to the control by 171% and 160%, respectively. As a result of this experiment, it is thought that UV LED irradiation before harvesting can produce sprout ginseng with high ginsenoside contents in a plant factory.