• Title/Summary/Keyword: Pre-Heat-Treated Steel

Search Result 18, Processing Time 0.022 seconds

Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials (Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향)

  • Bae, Dong-Hyun;Jung, Su-Jung;Cho, Young-Rae;Jung, Won-Sup;Jung, Ho-Shin;Kang, Chang-Yong;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

A Study on the Effects of Etching Surface Characteristics on Condensation Heat Transfer in Pre-heating Exchanger (급기 예열 열교환기에서 에칭 표면 특성이 응축 열전달에 미치는 영향에 관한 연구)

  • Seok, Sungchul;Hwang, Seung Sik;Choi, Gyu Hong;Shin, Donghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • In order to improve the heat efficiency of the general residential boiler, we performed an experiment of condensation heat transfer to air pre-heating exchanger adhered to the condensing boiler. In this study, surface roughness was imposed on the surface of stainless steel by etching. And in order to evaluate the heat transfer performance on each plate, the counter flow heat exchanger fabricated with polycarbonate in used. As a result, on etching treated plate's overall heat transfer coefficient is higher than the original plate. And etching treated plate during 60 seconds with etchant is the to average 15% compared to bare stainless steel. And we studied the heat transfer enhancement factor through the analysis of surface characteristics using AFM.

The Effect of Pre-Heat Treatment Parameters on the Ion Nitriding of Tool Steel (금형공구강의 이온질화에 미치는 이전열처리 조건의 영향)

  • Lee, J.S.;Kim, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of STD11 and STD61 tool steel nitrided by micro-pulse plasma were investigated. The quenching temperature for obtaining matrix hardness of STD11 and STD61 steel on range of HRC 50 to HRC 60 desired for machine parts is about $1070^{\circ}C$ and $1020^{\circ}C$ respectively. The hardness of STD11 and STD61 quenched at the temperature was HRC 63 and HRC 56 respectively. The nitrided case depth of STD11 and STD61 nitrided at $550^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and the depth was approximately $100{\mu}m$. However, hardness and compactness of nitrided layer on Q/T treated specimen were higher than the annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrided layer decreased with the increase of temperature. Phase mixture of ${\gamma}-Fe_4N$ and ${\varepsilon}-Fe_{2-3}N$ was detected by XRD analysis in the nitrided layer formed at the optimum nitriding condition. The optimum nitriding temperature was approximately $490^{\circ}C$ which was $10^{\circ}C$ lower than the tempering temperature for preventing softening behavior of STD11 and STD61 matrix during nitriding process and the surface hardness of nitrided layer obtained by optimum pre-heat treatment condition was about Hv1400.

  • PDF

Preanalysis of Hydrogen-induced Delayed Fracture for High Strength Prehent-Treated Steel (고강도 신조질강 냉간단조품의 지연파괴 메커니즘 분석)

  • Lee, J.B.;Kang, N.H.;Park, J.T.;Ahn, S.T.;Park, Y.D.;Choi, I.D.;Cho, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.38-39
    • /
    • 2009
  • The precipitate percentage and the spheroidization percentage were analyzed as a function of the tempering temperatures and the alloying elements for high strength preheat-treated steel. The optimum temperature of tempering produced the small precipitates of nano size. The precipitate percentage and the spheroidization percentage were increased with the tempering temperatures. The size of precipitate decreased as the spheroidization of carbon precipitates progressed. The alloying elements such as Cr and Mo reduced the sphereidization temperature.

  • PDF

The Effect of Pretreatment(Q/T) on the Plasma Nitriding of SCM435 Structural Steel (SCM435 구조용 합금강의 플라즈마 질화에 미치는 전처리(Q/T)의 영향)

  • Lim, Young-Phil;Park, Dae-Chul;Lee, Jae-Sig;You, Yong-Zoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.99-110
    • /
    • 1998
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of SCM435 structural steel nitrided by micro-pulse plasma was investigated. The quenching and tempering temperatures for obtaining matrix hardness of SCM435 steel on range of HRC30 to HRC40 desired for machine parts were about $860^{\circ}C$ and $500^{\circ}C$ respectively. The case depth of SCM435 nitrided at $480^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and was approximately $150{\mu}m$. However, hardness and compactness of nitrified layer on Q/T treated specimen were more heigher than annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrified layer decreased with the temperature. Phase mixture of ${\gamma}^{\prime}$-phase($Fe_4N$) and ${\varepsilon}$-phase($Fe_3N$) were detected by XRD analysis in the nitrified layer formed at optimum nitriding condition, and only single ${\gamma}^{\prime}$-phase was detected in the nitrified layer formed at higher nitriding temperature such as $540^{\circ}C$. The optimum nitriding temperature was approximately $480^{\circ}C$ which is lower than tempering temperature for preventing softening behavior of SCM435 matrix during nitriding process and the surface hardness of nitrified layer obtained by optimum preheat treatment condition was about Hv930.

  • PDF

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Study on the NiAl Coating for Corrosion Resistance of Stainless Steel in Molten Carbonate Salt (용융탄산염에 대한 스테인레스강의 내식성 향상을 위한 NiAl 피복에 관한 연구)

  • Hwang, Eung-Rim;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.76-80
    • /
    • 1997
  • '4 NiAl coating process was applied on 316 stainless steel to retard the corrosion of the wet- seal area of separator for the molten carbonate fuel cell. The Nit11 phasc on the stainless steel substrate could be formed by pre-coating with Ni, plated with A1 and ther, heat treated at $800^{\circ}C$ for 3 hr in $H_2/N_2$ gas atmosphere. The corrosion protection behavior of YiAl coating layer was stuilied under immersion condition in molten cxhonate salt($62^{m}/_{o}Li_2CO_3-38^{m}/_{o}/K_{2}CO_{3}$) at $650^{\circ}C$. The NiAl coating layer ticposited on the AiSi 316 stainless steel had high corrosion resistance in molten carbor. dte salt. The corrosion resistance of XiAl (~~jpoared to be associated with the .A1 oxide formed on the surface of coating layer.

  • PDF

Evaluation of Acoustic Emission Signals Characteristics of Post Weld Heat Treated Multi-Pass Weld Block for SA-516 Pressure Vesssel Steel (SA-516강 다층용접부 용접후 열처리재의 음향방출신호 특성 평가)

  • Na, Eui-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • In this study, evaluation of acoustic emission signals characteristics for the post weld heat treated (PWHT) multi-pass weldment and weldment was dealt. Charpy standard specimens were taken from the lowest, middle and highest regions of the weld block. Pre-crack was made using the repeated load. Four point bend and AE tests were conducted simultaneously. Regardless of the specimens, AE signals were absent within elastic region and produced in the process of plastic deformation. AE signals for all specimens were not emitted after the maximum load. Value of signal strength for the all PWHT specimens was lower than that of the weldment. Besides, relations of plastic deformation zone size and accumulated AE counts for the PWHT specimens were more simple compared with the weldment. In case of the PWHT specimen, particles on the fractured surface decreased prominently compared with the weldment due.to PWHT. From these results, it can be concluded that PWHT was effective in reducing the AE sources for the weldment.