• 제목/요약/키워드: Pre-Heat Zone

검색결과 26건 처리시간 0.02초

화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향 (Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.449-456
    • /
    • 2010
  • HCCI 엔진은 고효율, 저공해를 실현할 수 있는 차세대 내연기관이다. 그러나 HCCI 엔진이 상용화되기 위해서는 몇 가지 문제점들이 해결되어야 한다. 그 중에서 가장 큰 문제점은 과도한 압력 상승률이 노킹을 발생시키기 때문에 운전영역이 제한되는 것이다. 이번 연구의 목적은 HCCI 엔진에서 압력상승률 저감을 위하여 온도 성층화와 농도 성층화 효과를 조사하는 것이다. 그리고 Multi-zone 모델을 이용한 화학반응 수치해석을 통하여 연소 및 배기가스 특성에 미치는 영향을 알아보았다. 수치해석에서 2 단계 열발생을 가지는 DME와 1단계 열발생을 가지는 메탄을 사용하였다.

인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석 (Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation)

  • 김태한;박정현;최부헌
    • 한국환경복원기술학회지
    • /
    • 제22권6호
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

SA-516강 다층용접부 용접후 열처리재의 음향방출신호 특성 평가 (Evaluation of Acoustic Emission Signals Characteristics of Post Weld Heat Treated Multi-Pass Weld Block for SA-516 Pressure Vesssel Steel)

  • 나의균
    • 비파괴검사학회지
    • /
    • 제31권5호
    • /
    • pp.529-535
    • /
    • 2011
  • 본 연구에서는 SA-516 압력용강의 다층용접재와 용접후 열처리재를 대상으로 음향방출신호 특성을 평가하였다. 또한 예균열 선단에서 형성되는 소성영역의 크기와 음향방출신호와의 관계를 고찰하였으며, 실험 후 파단면을 관찰하여 음향방출원을 규명하여 용접후 열처리의 유효성을 평가하였다. 용접재 및 후 열처리재 모두 용접된 판 두께방향의 중앙부에서 표준 샤르피 시험편을 채취하여 날카로운 균열(예균열)을 내고 난 다음, 4점굽힘과 음향방출실험을 동시에 실시하였다. 후 열처리재와 용접재 공히 탄성영역에서 음향방출 신호는 발생하지 않았으며, 항복하중과 최대하중 사이에서 발생하였고, 최대하중 이후의 소성 심화영역에서 는 신호가 발생하지 않았다. 후 열처리재의 음향방출신호 강도는 시험편의 채취 위치에 관계없이 용접재에 비해 작았으며, 균열선단에서 소성영역의 진전형태는 용접재에 비해 훨씬 단순한 양상을 보였다. 후 열처리재의 파단면에는 용접재와는 달리 산화물의 분포가 훨씬 적었으며, 이는 열처리로 인해 용접부의 음향방출원이 감소하였다는 점에서 볼 때 열처리 효과는 있었다.

보론/티타늄 나노박막다층 내 이종금속간 화학반응 전파특성 해석연구 (Computational Study of Intermetallic Reaction Propagation in Nanoscale Boron/Titanium Metallic Multilayers)

  • 김경진;박중윤
    • 한국추진공학회지
    • /
    • 제21권3호
    • /
    • pp.10-17
    • /
    • 2017
  • 빠른 반응성 및 자체전파특성을 가지는 보론/티타늄 나노 다층박막구조를 대상으로 박막층 수평방향으로의 이종금속간 화학반응 및 화염 전파현상 해석 모델링을 수립하였다. 이종금속간 화학반응은 Arrhenius 반응식을 가정하여 모델링하였으며, 열 및 화학종 확산, 발열 화학반응에 따른 화염 자체전파 현상에 대하여 2차원적 전산해석을 수행하였다. 보론 및 티타늄 박막층의 두께 및 두께비 등 나노구조 형상의 영향을 비롯하여 접촉층 예혼합 정도가 화염 자체전파속도에 미치는 영향을 분석하였다.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

기온자료에 근거한 주요 포도품종의 휴면해제 및 발아시기 추정 (Prediction of Dormancy Release and Bud Burst in Korean Grapevine Cultivars Using Daily Temperature Data)

  • 권은영;송기철;윤진일
    • 한국농림기상학회지
    • /
    • 제7권3호
    • /
    • pp.185-191
    • /
    • 2005
  • An accurate prediction of dormancy release and bud burst in temperate zone fruit trees is indispensable for farmers to plan heating time under partially controlled environments as well as to reduce the risk of frost damage in open fields. A thermal time-based two-step phenological model that originated in Italy was applied to two important grapevine cultivars in Korea for predicting bud-burst dates. The model consists of two sequential periods: a rest period described by chilling requirement and a forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units (chill days in negative sign) until a pre-determined chilling requirement for rest release is met. After the projected rest release date, it adds daily heat units (anti-chill days in positive sign) to the chilling requirement. The date when the sum reaches zero isregarded as the bud-burst in the model. Controlled environment experiments using field sampled twigs of 'Campbell Early' and 'Kyoho' cultivars were carried out in the vineyard at the National Horticultural Research Institute (NHRI) in Suwon during 2004-2005 to derive the model parameters: threshold temperature for chilling and chilling requirement for breaking dormancy. The model adjusted with the selected parameters was applied to the 1994-2004 daily temperature data obtained from the automated weather station in the NHRI vineyard to estimate bud burst dates of two cultivars and the results were compared with the observed data. The model showed a consistently good performance in predicting the bud burst of 'Campbell Early' and 'Kyoho' cultivars with 2.6 and 2.5 days of root mean squared error, respectively.