• 제목/요약/키워드: Pre-Clustering

검색결과 126건 처리시간 0.031초

노드의 여유 에너지 기반 이동 Ad Hoc 네트워크의 라우팅 프로토콜 (Energy-Aware Routing Protocol for Mobile Ad Hoc Network)

  • 권수근
    • 한국멀티미디어학회논문지
    • /
    • 제8권8호
    • /
    • pp.1108-1118
    • /
    • 2005
  • Ad Hoc 네트워크는 무선접속을 사용하는 이동 노드들이 중앙관리 없이 구성되는 네트워크이다. Ad Hoc 네트워크의 노드는 제한된 전원을 가지며, 따라서 효율적으로 에너지를 사용하는 라우팅 방식에 대한 연구가 필요하다. 기존의 석유 에너지 기반 라우팅은 특정 노드의 과도한 에너지 소모에 따른 노드들간의 공정성, 네트워크 전체의 과도한 에너지 소비 등의 문제점을 가지고 있다. 본 논문에서는 기존의 문제점을 개선할 수 있는 Clustering Based Energy-Aware Routing (CBEAR) 방식을 제안하였다. 성능분석 결과 제안된 방식은 노드의 생존성을 유지하면서 노드들간의 공정성과 네트워크 전체의 에너지 효율성을 개선함을 확인하였다.

  • PDF

FCM을 이용한 3차원 영상 정보의 패턴 분할 (The Pattern Segmentation of 3D Image Information Using FCM)

  • 김은석;주기세
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.871-876
    • /
    • 2006
  • 본 논문은 공간 부호화 패턴들을 이용하여 3차원 얼굴 정보를 정확하게 측정하기 위하여 초기 얼굴 패턴 영상으로부터 이미지 패턴을 검출하기 위한 새로운 알고리즘을 제안한다. 획득된 영상이 불균일하거나 패턴의 경계가 명확하지 않으면 패턴을 분할하기가 어렵다. 그리고 누적된 오류로 인하여 코드화가 되지 않는 영역이 발생한다. 본 논문에서는 이러한 요인에 강하고 코드화가 잘 될 수 있도록 FCM 클러스터링 방법을 이용하였다. 패턴 분할을 위하여 클러스터는 2개, 최대 반복횟수는 100, 임계값은 0.00001로 설정하여 실험하였다. 제안된 패턴 분할 방법은 기존 방법들(Otsu, uniform error, standard deviation, Rioter and Calvard, minimum error, Lloyd)에 비해 8-20%의 분할 효율을 향상시켰다.

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

네트워크 카메라 영상에서 원근감 효과를 고려한 군집 움직임 분석 (The Crowd Activity Analysis based on Perspective Effect in Network Camera)

  • 이상걸;박현준;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.415-418
    • /
    • 2008
  • 본 논문에서는 특정 지역을 연속해서 촬영하는 고정된 카메라 영상에서 사람들의 움직임을 검출하고 움직임을 분석하여 정량화 하는 방법을 제안한다. 먼저 배경 영상을 획득하기 위하여 일정 시간동안의 입력 영상을 누적하고 평균값으로 정규화 한다. 그리고 영상을 계속 누적하여 배경 영상을 실시간으로 갱신한다. 다음으로 획득된 배경 영상과 현재 영상에 대하여 차영상과 이진화를 수행하고 팽창 연산과 연결 성분 분석으로 잡영을 제거한다. 그리고 잡영이 제거된 영상에서 원근감 효과를 고려하는 가중치를 적용하여 움직임이 있는 객체를 클러스터링 하는 수정된 ART2 클러스터링 방법을 제안한다. 마지막으로 클러스터링 결과 정보를 이용하여 움직임을 정량화 한다. 제안하는 방법을 실내 환경에 설치된 네트워크 카메라로부터 영상을 획득하여 실험한 결과, 영상의 원근감 효과에 따라 군집 크기가 차이남에도 강인하게 분석할 수 있음을 확인하였다.

  • PDF

효모 마이크로어레이 유전자 발현데이터에 대한 가우시안 과정 회귀를 이용한 유전자 선별 및 군집화 (Screening and Clustering for Time-course Yeast Microarray Gene Expression Data using Gaussian Process Regression)

  • 김재희;김태훈
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.389-399
    • /
    • 2013
  • 본 연구에서는 가우시안 과정회귀방법을 소개하고 시계열 마이크로어레이 유전자 발현데이터에 대해 가우시안 과정회귀를 적용한 사례를 보이고자한다. 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용한 유전자를 선별방법에 대한 모의실험을 통해 민감도, 특이도, 위발견율 등을 계산하여 선별방법으로의 활용성을 보였다. 실제 효모세포주기 데이터에 대해 제곱지수공분산함수를 고려한 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용하여 차변화된 유전자를 선별한 후, 선별된 유전자들에 대해 가우시안 모형기반 군집화를 하고 실루엣 값으로 군집유효성을 보였다.

Study of Data Placement Schemes for SNS Services in Cloud Environment

  • Chen, Yen-Wen;Lin, Meng-Hsien;Wu, Min-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3203-3215
    • /
    • 2015
  • Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.

뉴스 비디오 자막 추출 및 인식 기법에 관한 연구 (Study on News Video Character Extraction and Recognition)

  • 김종열;김성섭;문영식
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.10-19
    • /
    • 2003
  • 비디오 영상에 포함되어 있는 자막은 비디오의 내용을 함축적으로 표현하고 있기 때문에 비디오 색인 및 검색에 중요하게 사용될 수 시다. 본 논문에서는 뉴스 비디오로부터 폰트, 색상, 자막의 크기 등과 같은 사전 지식 없이도 자막을 효율적으로 추출하여 인식하는 방법을 제안한다. 문자 영역의 추출과정에서 문자영역은 뉴스 비디오의 여러 프레임에 걸쳐나 나오기 때문에 인길 프레임의 차영상을 통해서 동일한 자막 영역이 존재하는 프레임을 자동적으로 추출한 후, 이들의 시간적 평균영상을 만들어 인식에 사용함으로써 인식률을 향상한다. 또한, 평균 영상의 외각선 영상을 수평, 수직방향으로 투영한 값을 통해 문자 영역을 찾아 Region filling, K-means clustering을 적용하여 배경들을 완벽하게 제거함으로써 최종적인 자막 영상을 추출한다. 자막 인식과정에서는 문사 영역 추출과정에서 추출된 글자영상을 사용하여 white run, zero-one transition과 같은 비교적 간단한 특징 값을 추출하여 이를 비교함으로써 인식과정을 수행한다. 제한된 방법을 다양한 뉴스 비디오에 적용하여 문자영역 추출 능력과 인식률을 측정한 결과 우수함을 확인하였다.

Improving Accuracy of Chapter-level Lecture Video Recommendation System using Keyword Cluster-based Graph Neural Networks

  • Purevsuren Chimeddorj;Doohyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.89-98
    • /
    • 2024
  • 본 논문은 챕터 수준의 강의 동영상 추천 시스템에 있어서 추천의 정확도와 처리속도 간의 균형문제, 즉, 추천 정확도를 향상시키려면 처리 속도가 저하되고, 반대로 처리 속도를 높일 경우 정확도가 감소하는 문제에 대하여 연구한다. 본 논문에서는 이의 해결을 위하여 TF-IDF, K-Means++ Clustering, Graph Neural Network(GNN) 등 다양한 기법을 복합적으로 활용하는 방법을 제안한다. 즉, 챕터들의 유사성을 바탕으로 클러스터를 사전에 구성함으로써 검색 시의 계산량을 줄여 속도를 향상시키면서도, 클러스터를 노드로 하는 그래프에 대하여 GNN을 적용함으로써 추천의 정확도를 향상시키는 방법을 제안한다. 실험 결과 GNN을 사용한 경우 추천의 정확도가 MRR 지표에서 약 19.7% 증가하였으며, 유사도 기반의 정밀도에 있어서 약 27.7% 증가하는 결과를 확인할 수 있었다. 이를 통해 학습자의 질의에 보다 적합한 동영상 챕터를 추천하는 학습시스템 구축에 기여할 것으로 기대한다.

사전 클러스터링을 이용한 LDA-확장법들의 최적화 (On Optimizing LDA-extentions Using a Pre-Clustering)

  • 김상운;구범용;최우영
    • 전자공학회논문지CI
    • /
    • 제44권3호
    • /
    • pp.98-107
    • /
    • 2007
  • 얼굴인식 등과 같은 고차원 패턴인식에서 학습패턴의 수가 패턴 차원에 비해 매우 적을 경우 희소성 문제(the Small Sample Size problem)가 발생한다. 최근 이 문제를 해결하기 위하여 LDA, PCA+LDA, Direct-LDA 등을 비롯한 다양한 LDA-확장 법이 제안되었다. 본 논문에서는 LDA-확장 법으로 차원을 축소하기 전에 학습 패턴을 사전 클러스터링하여 서브 클래스 수를 증가시키는 방법으로 LDA-확장에 기반을 둔 식별기의 성능을 향상시키는 방법을 제안한다. LDA (또는 Direct-LDA)에서 축소된 특징공간의 차원은 학습패턴의 클래스 수로 제한되기 때문에 LDA의 식별 성능을 향상시킬 수 있도록 학습패턴을 사전에 클러스터링하여 서브 클래스의 수를 증가시키는 방법이다. 즉, 학습패턴의 특성공간(the eigen space)은 레인지 공간(the range space)과 널 공간(the null space)으로 구성되며, 레인지 공간의 차원은 클래스 수의 증가에 따라 증가한다. 따라서 변환 행렬을 구성할 때 클래스의 수를 늘려 널 공간을 최소화하게 되면 이 공간에 기인한 정보의 손실을 최소화 할 수 있다. 제안 방법을 X-OR 형태의 인공데이터와 AT&T와 Yale 벤취마크 얼굴영상 데이터베이스를 대상으로 실험한 결과 본 방법의 효용성을 확인하였다.

Clinical Effect of Transverse Process Hook with K-Means Clustering-Based Stratification of Computed Tomography Hounsfield Unit at Upper Instrumented Vertebra Level in Adult Spinal Deformity Patients

  • Jongwon, Cho;Seungjun, Ryu;Hyun-Jun, Jang;Jeong-Yoon, Park;Yoon, Ha;Sung-Uk, Kuh;Dong-Kyu, Chin;Keun-Su, Kim;Yong-Eun, Cho;Kyung-Hyun, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권1호
    • /
    • pp.44-52
    • /
    • 2023
  • Objective : This study aimed to investigate the efficacy of transverse process (TP) hook system at the upper instrumented vertebra (UIV) for preventing screw pullout in adult spinal deformity surgery using the pedicle Hounsfield unit (HU) stratification based on K-means clustering. Methods : We retrospectively reviewed 74 patients who underwent deformity correction surgery between 2011 and 2020 and were followed up for >12 months. Pre- and post-operative data were used to determine the incidence of screw pullout, UIV TP hook implementation, vertebral body HU, pedicle HU, and patient outcomes. Data was then statistically analyzed for assessment of efficacy and risk prediction using stratified HU at UIV level alongside the effect of the TP hook system. Results : The screw pullout rate was 36.4% (27/74). Perioperative radiographic parameters were not significantly different between the pullout and non-pullout groups. The vertebral body HU and pedicle HU were significantly lower in the pullout group. K-means clustering stratified the vertebral body HU ≥205.3, <137.2, and pedicle HU ≥243.43, <156.03. The pullout rate significantly decreases in patients receiving the hook system when the pedicle HU was from ≥156.03 to < 243.43 (p<0.05), but the difference was not statistically significant in the vertebra HU stratified groups and when pedicle HU was ≥243.43 or <156.03. The postoperative clinical outcomes improved significantly with the implementation of the hook system. Conclusion : The UIV hook provides better clinical outcomes and can be considered a preventative strategy for screw-pullout in the certain pedicle HU range.