• Title/Summary/Keyword: Pre-AM processes

Search Result 2, Processing Time 0.021 seconds

Technology Trend of the additive Manufacturing (AM) (적층식 제조(Additive manufacturing) 기술동향)

  • Oh, Ji-Won;Na, Hyunwoong;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.494-507
    • /
    • 2017
  • A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.

Theoretical Studies on the A2 Hydrolysis of Methyl Acetimidate

  • Ikchoon Lee;Chang Kon Kim;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.194-200
    • /
    • 1990
  • Various mechanistic aspects of the A2 hydrolysis of methyl acetimidate were explored using the MNDO method. As in thecorresponding reactions of acetamide and methyl carbamate, a proton transfer pre-equilibrium exists between the N-protonated and the O-protonated tautomers, and the subsequent hydrolysis proceeds from the more stable N-protonated form. Of the two reaction pathways, the $A_{AL}2$ path is favored in the gas phase and in concentrated acid solutions, whereas the $A_{AC}2$ path is favored in less acidic solutions with a stable cationic tetrahedral intermediate formed in the rate determining step. Negative charge development on the alkoxy oxygen in the transition state suggested a rate increase with the increase in the electron withdrawing power of the alkoxy group. Calculations on the reaction processes with AM1 indicated that MNDO is more reliable in this type of work, although AM1 is better than MNDO in reproducing hydrogen bonds.