• Title/Summary/Keyword: Prallel Processing

Search Result 2, Processing Time 0.016 seconds

An Implementation of Pipelined Prallel Processing System for Multi-Access Memory System

  • Lee, Hyung;Cho, Hyeon-Koo;You, Dae-Sang;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.149-151
    • /
    • 2002
  • We had been developing the variety of parallel processing systems in order to improve the processing speed of visual media applications. These systems were using multi-access memory system(MAMS) as a parallel memory system, which provides the capability of the simultaneous accesses of image points in a line-segment with an arbitrary degree, which is required in many low-level image processing operations such as edge or line detection in a particular direction, and so on. But, the performance of these systems did not give a faithful speed because of asynchronous feature between MAMS and processing elements. To improve the processing speed of these systems, we have been investigated a pipelined parallel processing system using MAMS. Although the system is considered as being the single instruction multiple data(SIMD) type like the early developed systems, the performance of the system yielded about 2.5 times faster speed.

  • PDF

Implementation of Parallel Local Alignment Method for DNA Sequence using Apache Spark (Apache Spark을 이용한 병렬 DNA 시퀀스 지역 정렬 기법 구현)

  • Kim, Bosung;Kim, Jinsu;Choi, Dojin;Kim, Sangsoo;Song, Seokil
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.608-616
    • /
    • 2016
  • The Smith-Watrman (SW) algorithm is a local alignment algorithm which is one of important operations in DNA sequence analysis. The SW algorithm finds the optimal local alignment with respect to the scoring system being used, but it has a problem to demand long execution time. To solve the problem of SW, some methods to perform SW in distributed and parallel manner have been proposed. The ADAM which is a distributed and parallel processing framework for DNA sequence has parallel SW. However, the parallel SW of the ADAM does not consider that the SW is a dynamic programming method, so the parallel SW of the ADAM has the limit of its performance. In this paper, we propose a method to enhance the parallel SW of ADAM. The proposed parallel SW (PSW) is performed in two phases. In the first phase, the PSW splits a DNA sequence into the number of partitions and assigns them to multiple nodes. Then, the original Smith-Waterman algorithm is performed in parallel at each node. In the second phase, the PSW estimates the portion of data sequence that should be recalculated, and the recalculation is performed on the portions in parallel at each node. In the experiment, we compare the proposed PSW to the parallel SW of the ADAM to show the superiority of the PSW.