• Title/Summary/Keyword: Pozzolanic Reaction

Search Result 126, Processing Time 0.024 seconds

CHROMIUM LEACHABILITY FROM STABILIZED/SOLIDIFIED SOILS UNDER MODIFIED SEMI-DYNEMIC LEACHING CONDITIONS

  • Moon, Deok-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.294-305
    • /
    • 2005
  • The effectiveness of fly ash-, quicklime-, and quicklime-fly ash-based stabilization/solidification(S/S) in chromium(Cr) contaminated soils was investigated using modified semi-dynamic leaching tests. Artificial soil samples composed of kaolinite or montmorillonite contaminated with chromium nitrate(4000 mg $Cr^{3+}\;kg^{-1}$ of solid) were prepared and then subjected to S/S treatment using quicklime, fly ash, or quick lime-fly ash. The effectiveness of the treatment was evaluated by assessing the cumulative fraction of leached $Cr^{3+}$ as well as, by computing the effective diffusivity ($D_e$) and the leachability index (LX) of the treated samples. The reduction in $Cr^{3+}$ release for the untreated samples was more pronounced in the presence of montmorillonite, which was attributed to sorption. Treatment with quicklime, fly ash, or quick lime-fly ash was significantly effective in reducing $Cr^{3+}$ release most probably due to the formation of pozzolanic reaction products and $Cr(OH)_3$ precipitation. The most effective treatment was observed in montmorillonite-sand soil samples treated with quicklime-fly ash (99.8% removal). The mean $D_e$ decreased significantly and the mean LX was greater than 9 for all treated samples, indicating that the treated soils were acceptable for "controlled utilization". The mechanism controlling $Cr^{3+}$ leaching from all treated samples during the first 5 days appeared to be diffusion.

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

An Experimental Study on the Characteristics of Microporous Structure Formation by Curing Condition of Cement and Blast Furnace Slag Composite (시멘트 및 고로슬래그 경화체의 양생환경에 따른 미세 공극구조 형성 특성에 관한 실험적 연구)

  • Park, Cheol;Jung, Yeon-Sik;Seo, Chee-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.63-70
    • /
    • 2017
  • When industrial by-products like slag and fly ash are using in concrete with cement, it improves strength and durability against external deterioration factors by densifying the structure through potential hydraulic and pozzolanic reaction. But it has been pointed out that high dependence on the quality variation and the curing condition using a admixure material for concrete. In this study, the characteristics of internal micropore structure according to curing condition were analyzed for pastes and mortar specimens under using blast furnace slag powder. As a result, the variation of compressive strength and the internal microstructure were observed according to curing conditions by binder type. Particularly, using blast furnace slag powder, decrease in compressive strength were clearly observed in indoor and carbonation curing compared with water curing. The pore structure analysis also clearly observed the decrease of the gel pore existing in the CSH hydrate layer and the increase of the capillary pore in indoor and carbonation curing compared with water curing condition.

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

A Study on the Hydration Characteristics and Fundamental Properties of Ternary Blended Cement Using Ferronickel Slag (페로니켈슬래그 및 고로슬래그 미분말을 결합재로 사용한 삼성분계 시멘트의 수화 특성 및 기초물성에 관한 연구)

  • Cho, Won-Jung;Kim, Han-Sol;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.39-48
    • /
    • 2020
  • The present study investigates the chemical reaction and performance of ternary blended binders by mixing ferronickel slag. Cement was replaced using ground granulated blast furnace slag and ferronickel slag, combined up to 50% of the replacement rate. The blended cements were tested by setting times, length change, compressive strength at 1, 3, 7, 28 days. X-ray diffraction and scanning electron microscope were conducted for detecting hydration products while the MIP and microhydation heat were used for examining morphological characteristics. The results showed that by adding ferronickel slag, Pozzolanic reaction occurred, forming a dense pore structure and the effect of reducing hydration heat and dry shrinkage was also found. The compressive strength at 28 days was lower than that of 100% OPC control specimen (OSP0), but ternary blended cements showed no significant difference compared to binary blended (OSP50). If the optimal mix is derived later and used for the purpose, the potential for use as a cement binder is expected.

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.

Relationship between Carbonation Rate and Compressive Strength in Concrete with Unclear Local Aggregate Qualities (골재 지역 특성이 불분명한 콘크리트의 탄산화 속도 및 강도 상관성)

  • Jin-Won Nam;Hyeong-Ki Kim;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.246-253
    • /
    • 2024
  • When concrete with slag powder or fly ash is under an accelerated carbonation test at early age, a very complicated carbonation behavior occurs since several reactions covering cement hydration, pozzolanic reaction, and carbonation reaction occu simultaneously. In particular, fine and coarse aggregates with poor quality were used, the trend with strength development and carbonation behavior was not clear. In this study, concrete samples with three design strength grade(24 MPa, 27 MPa, and 30 MPa) were manufactured with different aggregates site(A, B, and C). Compressive strength test were performed considering curing ages(7 and 28 days), and the accelerated carbonation tests were performed for 8 weeks for evaluating carbonation rate. The relationship between compressive strength and carbonation rate was analyzed considering mix properties and the aggregate site conditions. In addition, the minimum cover depth satisfying intended service life was obtained through carbonation design based on Domestic Design Code, and the necessities for improving design parameters (direction coefficient and effective water-binder ratio) were suggested.

A Hydration Reaction and Strength Development Properties of Cement Using Pond Ash in Coal Fired Power Plant (화력 발전소 매립회를 치환한 시멘트의 수화반응 및 강도발현 특성)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Shin, Hong-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.578-584
    • /
    • 2021
  • This study comparatively analyzed the properties of hydration reaction and strength development of four types of pond ash(PA) and fly ash(FA), aiming for the effective use of PA. The PA whose chlorine content was highest due to the seawater movement method had a faster setting time, higher cumulative heat, and greater initial strength development than those of FA due to the acceleration of the cement hydration reaction. However, the activity factor increase rate decreased after seven days of curing due to the rapid generation of early hydrates. The PA that contained impurities, such as a large amount of unburned carbon, had a delayed setting time due to the lower hydration reaction. Moreover, the strength was degraded in all curing ages. The PA whose chlorine content was lower due to the freshwater movement method and the amorphous content exhibited similar hydration reactivity and strength development characteristics compared to that of FA. The thermogravimetric analysis results verified that it had a similar level of Ca(OH)2 consumption and pozzolanic reactivity with that of FA. Conclusively, it is necessary to expand the application of the freshwater movement method and manage the ignition loss to raise PA's usability.

Changes in Hydration and Watertightness of Cement Containing Two-Component Fluosilicate Salt Based Chemical Admixture (2성분 규불화염계 혼화제가 첨가된 시멘트의 수화반응 및 수밀성 변화)

  • Kim, Jae-On;Nam, Jae-Hyun;Kim, Do-Su;Khil, Bae-Su;Lee, Byoung-Ky
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.749-755
    • /
    • 2004
  • Fluosilicic acid ($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicate salts prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicate salts to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. In this study, two-component fluosilicate salt based chemical admixtures (MZ) of $4\%,\;6\%$, and $8\%$ concentration were prepared by the reaction of $H_2SiF_6$ ($25\pm2\%$) and metal salts. The effect of concentration of MZ at a constant adding ratio on the hydration and watertightness of cement were investigated respectively. In a cement containing MZ, metal fluorides such as $CaF_2$ and soluble silica by hydrolysis were newly formed during hydration. The total porosity of the hardened cement was lower in the presence of U because of packing role of metal fluoride and pozzolanic reaction of soluble $SiO_2$. Consequently, the watertightness of the hardened paste containing MZ was more improved than non-added (plain) due to an odd hydration between cement and MZ.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.