• Title/Summary/Keyword: Powertrain

Search Result 283, Processing Time 0.021 seconds

A Study on Measuring Clutch Dynamic Torque (클러치 동적 토크 계측에 관한 연구)

  • Lee, Sung-Koo;Kim, Dong-Young;Hur, Man-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.65-70
    • /
    • 2012
  • Torque fluctuation of engine generate gear rattle noise of transmission and many researches have been studied to decrease rattle noise by adjusting clutch damper system. So design optimization of clutch system is very important to decrease rattle noise and need knowing clutch dynamic torque at real vehicle driving condition. This makes it possible to measure clutch dynamic torque by using a small-size magnetic sensor. We install a small-size magnetic sensor on the input shaft of the transmission and measure the relative angular displacement between clutch hub and disc plate. We can obtain the clutch torque correspond to the angular displacement in the clutch torsional characteristics test. The object of this research is to measure clutch dynamic torque on real vehicle condition. Therefore, Clutch dynamic torque is very useful for investigating operating range of clutch according to engine torque and predicting the damping performance of torsional vibration on the powertrain.

A Study on Thermo-flow Characteristics Analysis of Electric Water Pump (전동 워터펌프의 열유동 특성 해석에 관한 연구)

  • Kim, Sung-Chul;Song, Hyeong-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.

Analysis of Dynamic Behaviors of Transmission Fluid Film in Wet Clutch Pad according to Patterned Grooves (습식클러치 패드의 Groove 패턴에 의한 변속기유의 동적 거동)

  • Kim, Hae Yong;Jang, Siyoul;Kim, WooJung;Shin, Soon Cheol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.92-98
    • /
    • 2014
  • Transmission fluid film behaviors in the gap between the wet clutch pad and separator plate are analyzed using the CFD software ADINA. Three pattern groove designs are selected and are used to validate the fluid film behaviors based on the outlet flow in the gap when the wet clutch pad and separator plate are engaged. The main design goal for pattern grooves is faster engagement. In most cases, much of the outlet flow of transmission fluid in the gap occurs on the outer radius boundary due to the centrifugal force generated by the clutch pad circular motion. Groove patterns are created to ensure faster transmission fluid outlet flow in the direction of the inner radius boundary. Computational results of the selected groove patterns are compared.

Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model (차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

Optimal Control of Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 최적 제어)

  • Zheng, Chun-Hua;Park, Yeong-Il;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • Fuel Cell Hybrid Vehicles (FCHVs) have already become the subject of major interest among automotive industry as well as power management strategies of FCHVs, as the fuel economy of FCHVs depends on them. There are several types of power management strategies of FCHVs that have been developed to improve the fuel economy of FCHVs. Among them, optimal control theory is applied to this study. A problem is defined and its objective is to minimize the energy consumption of an FCHV and to find the optimal trajectories of powertrain parameters during driving. Necessary conditions for the optimal control are introduced and the simulation results of constant costate are compared to that of variable costate in order to prove that the variable costate can be replaced with the constant costate.

Sizing of Powertrain in Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 동력전달계의 용량 선정)

  • Zheng, Chun-Hua;Shin, Chang-Woo;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.

Web-based Design Support System for Automotive Steel Pulley (웹 기반 자동차용 스틸 풀리 설계 지원 시스템)

  • Kim, Hyung-Jung;Lee, Kyung-Tae;Chun, Doo-Man;Ahn, Sung-Hoon;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.39-47
    • /
    • 2008
  • In this research, a web-based design support system is constructed for the design process of automotive steel pulley to gather engineering knowledge from pulley design data. In the design search module, a clustering tool for design data is proposed using K-means clustering algorithm. To obtain correlational patterns between design and FEA (Finite Element Analysis) data, a Multi-layer Back Propagation Network (MBPN) is applied. With the analyzed patterns from a number of simulation data, an estimation of minimum von mises can be provided for given design parameters of pulleys. The case study revealed fast estimation of minimum stress in the pulley within 12% error.

Analysis of Exciting Forces for In-Line 4 Cylinders Engine (직렬 4기통 엔진의 가진력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.