• 제목/요약/키워드: Powering

검색결과 173건 처리시간 0.022초

Energy harvesting techniques for remote corrosion monitoring systems

  • Kim, Sehwan;Na, Ungjin
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.555-567
    • /
    • 2013
  • An Remote Corrosion Monitoring (RCM) system consists of an anode with low potential, the metallic structures against corrosion, an electrode to provide reference potential, and a data-acquisition system to ensure the potential difference for anticorrosion. In more detail, the data-acquisition (DAQ) system monitors the potential difference between the metallic structures and a reference electrode to identify the correct potential level against the corrosion of the infrastructures. Then, the measured data are transmitted to a central office to remotely keep track of the status of the corrosion monitoring (CM) system. To date, the RCM system is designed to achieve low power consumption, so that it can be simply powered by batteries. However, due to memory effect and the limited number of recharge cycles, it can entail the maintenance fee or sometimes cause failure to protect the metallic structures. To address this issue, the low-overhead energy harvesting circuitry for the RCM systems has designed to replenish energy storage elements (ESEs) along with redeeming the leakage of supercapacitors. Our developed energy harvester can scavenge the ambient energy from the corrosion monitoring environments and store it as useful electrical energy for powering local data-acquisition systems. In particular, this paper considers the energy harvesting from potential difference due to galvanic corrosion between a metallic infrastructure and a permanent copper/copper sulfate reference electrode. In addition, supercapacitors are adopted as an ESE to compensate for or overcome the limitations of batteries. Experimental results show that our proposed harvesting schemes significantly reduce the overhead of the charging circuitry, which enable fully charging up to a 350-F supercapacitor under the low corrosion power of 3 mW (i.e., 1 V/3 mA).

전력구 내 지중선을 이용한 2W급 상용주파수 무선전력 수신장치 개발 (Development of 2W-Level Wireless Powered Energy Harvesting Receiver using 60Hz power line in Electricity Cable Tunnel)

  • 장기찬;최보환;임춘택
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.296-301
    • /
    • 2016
  • Using high magnetic flux from a 60 Hz high-current cable, a 2 W wireless-powered energy harvesting receiver for sensor operation, internet of things (IoT) devices, and LED lights inside electrical cable tunnels is proposed. The proposed receiver comprises a copper coil with a high number of turns, a ring-shaped ferromagnetic core, a capacitor for compensating for the impedance of the coil in series, and a rectifier with various types of loads, such as sensors, IoT devices, and LEDs. To achieve safe and easy installation around the power cable, the proposed ring-shaped receiver is designed to easily open or close using a clothespin-shaped handle, which is made of highly-insulated plastic. Laminated silicon steel plates are assembled and used as the core because of their mechanical robustness and high saturation flux density characteristic, in which the thickness of each isolated plate is 0.3 mm. The series-connected resonant capacitor, which is appropriate for low-voltage applications, is used together with the proposed receiver coil. The concept of the figure of merit, which is the product weight and cost of both the silicon steel plate and the copper wire, is used for an optimized design; therefore, the weight of the fabricated receiver and the price of raw material is 750 gf and USD $2 each, respectively. The 2.2 W powering capability of the fabricated receiver was experimentally verified with a power cable current of $100A_{rms}$ at 60Hz.

Mapping the Polarization of the Radio-Loud Lyman Alpha Nebula B3 J2330+3927

  • Yang, Yujin;You, Chang;Zabludoff, Ann;Smith, Paul;Jannuzi, Buell;Prescott, Moire
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.28.3-29
    • /
    • 2015
  • $Ly{\alpha}$ nebulae, or "$Ly{\alpha}$ blobs", are extended (~100 kpc), bright (L[$Ly{\alpha}$] ~ 1044 erg/s) clouds of $Ly{\alpha}$-emitting gas. The origin of the $Ly{\alpha}$ emission remains unknown, but recent theoretical work suggests that measuring the polarization could discriminate among powering mechanisms. we will discuss current status of $Ly{\alpha}$ polarization observations at high-redshift and our on-going survey program. We will present the first narrow-band, imaging polarimetry of a $Ly{\alpha}$ blob, B3 J2330+3927 at z=3.09, with an embedded, radio-loud AGN (C. You et al. in prep.). The AGN lies near the blob's $Ly{\alpha}$ emission peak and its radio lobes align roughly with the blob's semi-major axis. With the SPOL polarimeter on the MMT telescope, we map the polarization in a grid of circular apertures of radius 0.6" (4.4 kpc), detecting a significant (>$2{\sigma}$) polarization fraction P% in 10 apertures and achieving strong upper-limits (as low as 2%) elsewhere. The degree of the polarization map increases from P% ~ 5% at ~5 kpc from the blob center to ~20% at the outer part (~30 kpc). The detections are distributed asymmetrically, roughly along the blob's major axis. The polarization angles (${\Theta}$) are mostly perpendicular to this axis. These results are consistent with the picture that $Ly{\alpha}$ photons produced at the AGN (or the host galaxy) are resonantly scattered away from the center. Higher polarization fraction on the radio jet suggests that the gas is more optically thin along the jet than the off-axis region.

  • PDF

선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발 (Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat)

  • 한인수;정지훈;고백균;최청훈;유성주;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

3상 무정전 전원장치에 적합한 새로운 구조의 동기좌표계 전압제어기 (Advanced Synchronous Reference Frame Controller for three-Phase UPS Powering Unbalanced and Nonlinear Loads)

  • 현동석;김경환
    • 전력전자학회논문지
    • /
    • 제10권5호
    • /
    • pp.508-517
    • /
    • 2005
  • 본 논문은 LC 필터를 갖는 3상 인버터에 적합한 고성능 전압제어기에 대해서 기술한다. 불평형 부하 및 비선형 부하시 3상 인버터의 출력전압 왜곡을 동시에 보상 할 수 있는 새로운 동기좌표계 전압제어기를 제안한다. 제안된 제어기는 전용의 디지털 필터를 사용하여 불평형 및 비선형 부하 상태하에서도 동기좌표계의 PI 전압제어기가 3상 평형의 선형부하에서와 같이 직류값을 가지고 동작하게 함으로써 비록 전압제어기의 대역폭이 높지 않아도 정상상태 오차를 현격히 감소시킨다. 제안한 제어기의 성능의 타당성을 입증하기 위해서 모의실험 결과를 보였으며 실험을 통하여 모의실험 결과를 확인하였다.

Two New SiO Maser Sources in High-Mass Star-Forming Regions

  • Cho, Se-Hyung;Yun, Youngjoo;Kim, Jaeheon;Liu, Tie;Kim, Kee-Tae;Choi, Minho
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.46.3-46.3
    • /
    • 2016
  • We present the ALMA Cycle 2 results "Two New SiO Maser Sources in High-Mass Star-Forming Regions" which was published in the Astrophysical Journal (Vol. 826, P157, 2016). Silicon monoxide (SiO) masers are rare in star forming regions, with the exception of five known SiO maser sources. However, we detected two new SiO maser sources from infrared loud clumps of the high-mass star forming regions G19.61-0.23 and G75.78+0.34 using the KVN single dish. High angular resolution observations with ALMA and JVLA toward G19.61-0.23 suggest that the deeply embedded young stellar object (YSO) of SMA 1 is powering the SiO masers. In addition, the SiO v=1, J=1-0 line shows four spike features while the v=2 maser shows combined features of one spike and broad wing components, implying energetic activities of the YSO of SMA 1 in the G19.61-0.23 hot molecular core. The SiO v=0, J=2-1 emission shows bipolar outflows in NE-SW direction with respect to the center of the SiO maser source. A high angular resolution map of the SiO v=1, J=2-1 maser in G75.78+0.34 shows that the SiO maser is associated with the CORE source at the earliest stage of high-mass star formation. Therefore, the newly detected SiO masers and their associated outflows will provide good probes for investigating this early high-mass star formation.

  • PDF

새로운 MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로 (Micro-scale Solar Energy Harvesting System with a New MPPT control)

  • 윤은정;윤일영;최선명;박윤수;유종근
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2627-2635
    • /
    • 2013
  • 본 논문에서는 새로운 MPPT 제어기능을 갖는 빛에너지 하베스팅 회로를 제안한다. 기존의 빛 에너지 하베스팅 회로에서는 MPPT(Maximum Power Point Tracking) 기능을 구현하기 위해 전력 변환기(power converter)를 동작시키기 위한 클록의 주파수나 듀티 싸이클(duty cycle)을 지속적으로 변화시키는 방법을 사용하고 있다. 본 논문에서는 전력변환기에 전력 공급을 위한 전력 스위치의 듀티 싸이클을 제어하여 MPPT 기능을 구현하는 새로운 방법을 제안한다. 제안된 회로는 $0.35{\mu}m$ CMOS 공정으로 설계 되었으며 칩 면적은 패드를 포함하여 $770{\mu}m{\times}800{\mu}m$이다.

전동열차의 운행에너지 절감을 위한 최적 운행 패턴 모델링 (Modeling of the Optimal Operation Pattern for Energy Saving of The Trains)

  • 김정현;이세훈;전상표
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권12호
    • /
    • pp.187-196
    • /
    • 2014
  • 본 논문에서는 고정된 역간 거리를 정해진 운전 시분내에 주행에너지를 최소화하며 주행하는 열차의 특성을 파악하고 수학적으로 모델링한다. 도시철도차량 자동주행에 일반적으로 사용되는 PID제어기 대신 목표값에 추종하면서도 자동 주행 중 소비에너지가 최소화되도록 최적제어기를 사용하여 철도 차량를 모델링하였으며 실제 동일한 운행조건하에서 설계한다. 실제 선로 조건을 적용하여 별도의 차상장치나 선로주변시설 없이도 자동운전 중 주행에너지를 최소하여 주행에너지를 절감하고자 한다. 따라서 8호선 실 노선 구간별 운전시분 내에서 실측 데이터 분석을 위해 직선구간/구배구간/곡선구간 등 구간을 선정하고 그 구간에서 열차의 운행패턴에 따라 에너지를 절감하는 열차운행을 방법을 제시하였다.