• Title/Summary/Keyword: Powered Gait Orthosis

Search Result 9, Processing Time 0.033 seconds

A Novel Powered Gait Orthosis using Pneumatic Muscle Actuator

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Moon, In-Hyuk;Ryu, Jae-Wook;Mun, Mu-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1500-1503
    • /
    • 2003
  • One of the main goals in the rehabilitation of SCI patients is to enable the patient to stand and walk themselves. We are developing high-thrust powered gait orthosis(PGO) that use air muscle actuator(shadow robot Co., UK) to be assisted gait and rehabilitation purposes of them. We made of PD controller and measured hip joint angle by its load and the pressure to control air muscle of PGO. As a results, maximum flexion angle of hip joint is $20^{\circ}$, and angular velocity is 30.4${\pm}2.5^{\circ}/sec$, and then delay time of system was average 0.62${\pm}$0.03s. As the hip flexion angle and the pelvic angle is decreased during the gait with PGO, the patient can walk faster. By using the PGO, the energy consumption can also be decreased. therefore, the proposed PGO can be a very useful assitive device for the paraplegics to walk.

  • PDF

Analysis of emergy comsumption for Hybrid Gait Orthosis (하이브리드 보행보조장치의 에너지 소모도 비교분석)

  • 강성재;류제청;김규석;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.814-817
    • /
    • 2004
  • It is a challenging task to make the paraplegic to walk with out the assist of the caregiver. So, we have developed various type of gait orthosis for paraplegic during the five years lately. The purpose of this study ultimately is energy consumption test of serveral type gait orthosis for developing the high efficiency gait orthosis. From the experimental results, the oxygen consumption rate were 6.9$\pm$3.3ml/kg in RGO gait, 5.3$\pm$1.3ml/kg in PGO, and 6.2$\pm$3ml/kg in HGO gait. The maximum hip flexion angle were 16$^{\circ}$ in RGO , 15$^{\circ}$ in PGO, and 47.5$^{\circ}$. in HGO. As a result It was found that. Hybrid Gait Orthosis need high energy consumption more than PGO for walking, but it is small weight and strengthened muscle.

  • PDF

Gait Simulation of Powered Gait Orthosis (동력보행보조기의 보행시뮬레이션)

  • Ryu, Je-Cheung;Cho, Hyeon-Seok;Kang, Sung-Jae;Mun, Mu-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1566-1571
    • /
    • 2003
  • PGO(Powered Gait Orthosis) mounted with pneumatic muscle as an actuator is upgraded model from RGO(Replicate Gait Orthosis) for paraplegia patients to walk easy and safe. Pneumatic muscles supply powers to both hip joint during PGO gait. The objective of this research is to develop the PGO gait simulation model. Dynamic model of PGO linkage system is processed. Mathematical model of pneumatic muscle was developed and combined it with PGO linkage system. Developed simulation model will be used as a tool for evaluation of the efficiency of pneumatic muscle and for analysis the PGO system.

  • PDF

Development of Knee Ankle Foot Orthosis for Gait Rehabilitation Training using Plantaflexion and Knee Extension Torque (족저굴곡과 무릎 신전 토크를 이용한 보행 재활 훈련용 장하지 보조기 개발)

  • Kim, Kyung;Kim, Jae-Jun;Heo, Min;Jeong, Gu-Young;Ko, Myoung-Hwan;Kwon, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.948-956
    • /
    • 2010
  • The purpose of this study was to test the effectiveness of a prototype KAFO (Knee-Ankle-Foot Orthosis) powered by two artificial pneumatic muscles during walking. We had previously built powered AFO (Ankle-Foot Orthosis) and KO (Knee Orthosis) and used it effectively in studies on assistance of plantaflexion and knee extension motion. Extending the previous study to a KAFO presented additional challenges related to the assistance of gait motion for rehabilitation training. Five healthy males were performed gait motion on treadmill wearing KAFO equipped with artificial pneumatic muscles to power ankle plantaflexion and knee extension. Subjects walked on treadmill at 1.5 km/h under four conditions without extensive practice: 1) without wearing KAFO, 2) wearing KAFO with artificial muscles turned off, 3) wearing KAFO powered only in plantaflexion under feedforward control, and 4) wearing KAFO powered both in plantaflexion and knee extension under feedforward control. We collected surface electromyography, foot pressure and kinematics of ankle and knee joint. The experimental result showed that a muscular strength of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be lower due to pneumatic assistance and foot pressure of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be greater due to power assistance. In the result of motion analysis, the ankle angle of powered KAFO in terminal stance phase was found a peak value toward plantaflexion and there were difference of maximum knee flexion range among condition 2, 3 and 4 in mid-swing phase. The current orthosis design provided plantaflexion torque of ankle jonit in terminal stance phase and knee extension torque of knee joint in mid-swing phase.

Development of Fuzzy Control Method Powered Gait Orthosis for Paraplegic Patients (하반신 마비환자를 위한 동력보행보조기의 퍼지제어 기법 개발)

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Kim, Gyu-Suk;Kim, Young-Ho;Mun, Mu-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • In this study, we would be developed the fuzzy controlled PGO that controlled the flexion and the extension of each PGO's hip joint using the bio-signal and FSR sensor. The PGO driving system is to couple the right and left sides of the orthosis by specially designed hip joints and pelvic section. This driving system consists of the orthosis, sensor, control system. An air supply system of muscle is composed of an air compressor, 2-way solenoid valve (MAC, USA), accumulator, pressure sensor. Role of this system provide air muscle with the compressed air at hip joint constantly. According to output signal of EMG sensor and foot sensor, air muscles and assists the flexion of hip joint during PGO gait. As a results, the maximum hip flexion angles of RGO's gait and PGO's gait were about $16^{\circ}\;and\;57^{\circ}$ respectively. The maximum angle of flexion/extention in hip joint of the patients during RGO's gait are smaller than normal gait, because of the step length of them shoes a little bit. But maximum angle of flexion/extention in hip joint of the patients during PGO's gait are larger than normal gait.

Comparison of Energy Consumption of Reciprocating Gait Orthosis(RGO) and Powered Gait Orthosis(PGO) during Gait (일반보행보조기(RGO)와 동력보행보조기(PGO)의 보행시 에너지 소모도 비교 평가 분석)

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.104-110
    • /
    • 2008
  • The aim of this study ultimately is verifying that PGO gait is more efficient than RGO fur paraplegics because the air muscle assists hip flexion power in heel off movement. The gait characteristics of the paraplegic wearing the PGO or RGO are compared with that of a normal person. PGO with air muscles was used to analyze the walking of patients with lower-limb paralysis, and the results showed that the hip joint flexion and pelvic tilt angle decreased in PGO. In comparison to RGO gait, which is propelled by the movements of the back, PGO uses air muscles, which decreases the movement in the upper limb from a stance phase rate of 79$\pm$4%(RGO) to 68$\pm$8%. The energy consumption rate was 8.65$\pm$3.3 (ml/min/Kg) for RGO, while it decreased to 7.21t2.5(ml/min/Kg) for PGO. The results from this study show that PGO decreases energy consumption while providing support for patients with lower-limb paralysis, and it is helpful in walking for extended times.

Development of Intelligent Powered Gait Orthosis for Paraplegic

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Moon, In-Hyuk;Kim, Kyung-Hoon;Mun, Mu-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1272-1277
    • /
    • 2005
  • In this study, we wolud be developed the fuzzy controlled PGO that controlled the flexion and the extension of each PGO's joint using the bio-signal and FSR sensor. The PGO driving system is to couple the right and left sides of the orthosis by specially designed hip joints and pelvic section. This driving system consists of the orthosis, sensor, control system. An air supply system of muscle is composed of an air compressor, 2-way solenoid valve(MAC, USA), accumulator, pressure sensor. Role of this system provide air muscle with the compressed air at hip joint constantly. According to output signal of EMG sensor and foot sensor, air muscles and assists the flexion of hip joint during PGO gait.

  • PDF