• Title/Summary/Keyword: PowerFLOW

Search Result 6,124, Processing Time 0.034 seconds

A Study on Three-Dimensional Flow Analysis and Noise Source of Sirocco Fan (시로코 팬의 3차원 유동해석 및 소음원에 관한 연구)

  • Kang, Jeong-Seok;Kim, Jin-Taek;Lee, Cheol-Hyung;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.896-902
    • /
    • 2018
  • This study examined the flow and noise inside a sirocco fan for ventilation as a commercial program. To confirm only the location and power of the noise source, flow analysis was performed with steady state flow analysis. Through flow analysis, the flow was observed in the sirocco fan and the velocity vector. The pressure distribution inside was observed with contours. From the results of steady analysis, the position and size of the noise source could be seen using the 'Curle surface acoustic power' and 'Proudman acoustic power'. The Curle surface acoustic power can be used to observe the noise from the surface. The Proudman acoustic power can be used to detect noise generated in the flow region because the position and size of the noise source generated inside the sirocco fan can be seen only in the steady state. Therefore it is necessary to further analyze the unsteady state to check the frequency of the noise generated. This study provides basic data for improving the performance of the Sirocco fan and reducing the noise.

Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System (지열에너지 시스템을 적용한 발전용 수차의 유동과 전력 특성)

  • Seo, Choong-Kil;Won, Joung-Wun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • Geothermal energy is used in various types, such as power generation, direct use, and geothermal heat pumps. Geothermal energy with high temperature have been used for power generation for more than a century. The purpose of the study is to investigate flow and electricity power characteristics of hydraulic turbine for power generation of geothermal heat pump type with closed-system. The differences between the four types of hydraulic turbine, are different from the blade shape, volume, angle and etc. In case of prototype(1), pressure at blade was reduced to 2.1 bar, the kinetic energy of blade increased by increasing flow velocity(4.1 m/s). The increase of flow velocity at the blade edge markedly appeared, to increase the kinetic energy of the rotating shaft. In case that gateway in hydraulic turbine was installed, operating torque and RPM(1,080) of the rotating shaft increased respectively. Although rotational speed of prototype(2) compared to prototype(1) was reduced, the power generation capacity was greater about 3.4 times to 97 W. The most power of 255W was generated from prototype (4).

Research on the Relation between Transformer Oil Flow Electrification and Electrostatic Current

  • Fu, Qiang;Wang, Rui;Zou, Pinguo;Li, Zhao;Yang, Yang;Xie, Xuejun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.610-615
    • /
    • 2015
  • In order to study and obtain the mathematical relation between the electrification degree of transformer oil flow and the electrostatic current, a small amount of data about the electrification degree of oil flow and the corresponding electrostatic current is studied by linear regression method and grey model method. The results show that the linear correlation between the electrification degree and the electrostatic current was not good, and the relation between the electrification degree of oil flow and electrostatic current (i) could be expressed as ${\rho}(0)=0.2049\;i^{(0)}+169.4419$ according to grey model GM (0, 2) when the electrification degree of oil flow is represented by the charge number generated from transformer oil per unit volume, namely the charge density (${\rho}$).

A Study on Power Flow Method of Radial Distribution System using a measured data from FRTU in Distribution Automation System (배전자동화 시스템의 단말장치(FRTU)로부터 취득되는 데이터를 이용한 방사상 배전계통 조류계산 방법에 관한 연구)

  • Kim, Hyung-Seung;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.286-287
    • /
    • 2015
  • Currently, Studies on improving the reliability of power supply is becoming an important issue because of the increase in demand of the electric power system. Therefore necessity of automation in distribution system is increasing day by day. However, a measured voltage data from FRTU of distribution automation system is incorrect because of installation space limits. Therefore there is a need of system analysis method by considering the characteristics of the distribution system. For a distribution system, applying the power flow method of transmission system has some problems, as distribution is radial system and it has unbalanced load. Therefore power flow by considering the characteristics of the distribution system have been studied. Existing power flow analysis of the distribution system has different methods like direct analysis method, backward/forward sweep method, modified method of newton raphson etc. In this paper, an improved power flow analysis method based on backward/forward sweep method is proposed in order to efficiently operate the distribution automation system. The proposed method of power flow has been verified through the result of case study.

  • PDF

Marginal Loss Factor using Optimal Power flow in Power Market (최적조류계산을 이용한 한계손실계수의 전력시장 적용)

  • Sin, Dong-Jun;Go, Yong-Jun;Lee, Hyo-Sang;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.379-384
    • /
    • 2002
  • In the competitive electricity market, various pricing methods are developed and practiced in many countries. Among these pricing methods, marginal loss factor(MLF) can be applied to reflect the marginal cost of network losses. For the calculation of MLF, power flow method has been used to calculate system loss deviation. However, this power flow method shows some shortcomings such as necessity of regional reference node, and absence of an ability to consider network constraints like line congestion, voltage limit, and generation output limit. The former defect might affects adversely to the equity of market participants and the latter might generate an inappropriate price signals to customers and generators. To overcome these defects, the utilization of optimal power flow(OPF) is suggested to get the system loss deviation in this paper. 30-bus system is used for the case study to compare the MLF results by the power flow and the OPF method for 24-hour dispatching and pricing, Generator payment and customer charge are compared with these two methods also. The results show that MLF by OPF reflects the power system condition more faithfully than that of by the conventional power flow method

The Optimal Operating Points of Multiple UPFCs for Enhancing Power System Security Level (전력시스템 안전도 향상을 위한 다기 UPFC의 최적 운전점 결정)

  • 임정욱;문승일
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.388-394
    • /
    • 2001
  • This paper presents how to determine the optimal operating points of Unified Power Flow controllers (UPFC) the line flow control of which can enhance system security level. In order to analyze the effect of these devices on the power system, the decoupled model has been employed as a mathematical model of UPFC for power flow analysis. The security index that indicates the level of congestion of transmission line has been proposed and minimized by iterative method. The sensitivity of objective function for control variables of and UPFC has been derived, and it represents the change in the security index for a given set of changes in real power outputs of UPFC. The proposed algorithm with sensitivity analysis gives the optimal set of operating points of multiple UPECs that reduces the index or increases the security margin and Marquart method has been adopted as an optimization method because of stable convergence. The algorithm is verified by the 10-unit 39-bus New England system that includes multiple FACTS devices. The simulation results show that the power flow congestion can be relieved in normal state and the security margin can be guaranteed even in a fault condition by the cooperative operation of multiple UPECs.

  • PDF

Modeling, Simulation and Fault Diagnosis of IPFC using PEMFC for High Power Applications

  • Darly, S.S.;Vanaja Ranjan, P.;Justus Rabi, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.760-765
    • /
    • 2013
  • An Interline Power Flow Controller (IPFC) is a converter based controller which compensates and balance the power flow among multi-lines within the same corridor of the multi-line subsystem. The Interline Power Flow Controller consists of a voltage source converter based Flexible AC Transmission System (FACTS) controller for series compensation. The reactive voltage injected by individual Voltage Source Converter (VSC) can be controlled to regulate active power flow in the respective line in which one VSC regulates the DC voltage, the other one controls the reactive power flows in the lines by injecting series active voltage. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB Simulink and PSPICE. The results obtained by MATLAB are compared with the results obtained by PSPICE and compared with theoretical values.

Analysis on Particle Cleaning Capacity of Indoor Air Cleaners for Different Flow Rates Considering Energy Consumption (에너지소비를 고려한 실내공기청정기의 풍량별 입자 청정화능력 분석)

  • Han, Bangwoo;Kang, Ji-Su;Kim, Hak-Joon;Kim, Yong-Jin;Won, Hyosig
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.139-147
    • /
    • 2013
  • The performances of indoor air cleaners including particle cleaning capacity and collection efficiency are usually tested at the condition of the maximum air flow rate of the air cleaners. However, the power consumption of the air cleaners is highly dependent on the air flow rate of the individual air cleaners. Therefore, there seems to be an optimized air flow rate for the air cleaning capacity considering power consumption. In this study, clean air delivery rate(or standard useful area as suggested room size) and power consumption have been investigated for different maximum air flow rates of 15 air cleaners and then compared those for different air flow rate modes of the individual 5 air cleaners selected from the 15 cleaners. For the maximum air flow rate conditions of 15 air cleansers, the power consumption per unit area was less related to the maximum air flow rate. However, for the different air flow rate modes of the selected 5 air cleaners, the lower power consumption per unit area was corresponding to the lower air flow rate mode of the individual air cleaners. When considering the operation time to the desired particle concentrations, there was an optimized one in the medium air flow rate modes for the individual air cleaners. Therefore, not only the maximum air flow rate but also lower air flow rates of individual air cleaners should be considered for estimating air cleaning capacity based on energy consumption per unit area.

The Power Flow Control of UPFC for Cost Minimization

  • Lim, Jung-Uk;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper presents a new operation scheme of UPFC to minimize both generation costs and active power losses in a normal operation state of power system. In a normal operation, cost minimization is a matter of primary concern among operating objectives. This paper considers two kinds of costs, generation costs and transmission losses. The total generation cost of active powers can be minimized by optimal power flow, and active power losses in the transmission system can be also minimized by power flow control of UPFC incorporated with minimization of generation costs. In order to determine amounts of active power reference of each UPFC required for the cost minimization, an iterative optimization algorithm based on the power flow calculation using the decoupled UPFC model is proposed. For verification of the proposed method, intensive studies have been performed on a 3-unit 6-bus system equipped with a UPFC.

Flow-Induced Vibration Test in the Preheater Region of a Steam Generator Tube Bundle

  • Kim, Beom-Shig;Hwang, Jong-Keun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.85-91
    • /
    • 1997
  • Cross-flow existing in a shell-and-tube steam generator can cause a tube to vibrate. There are four regions subjected to cross-flow in Yonggwang units 3 and 4 (YGN 3 and 4) steam generators, which are of the same design as the steam generators for Palo Verde nuclear power plant Palo Verde units 1 and 2 steam generators have experienced localized oar at the comers of the cold side recirculating fluid inlet regions. A number of design modifications were made to preclude tube failure in specific regions of YGN 3 and 4 steam generators. Therefore, flow induced vibration experiments were done to determine the vibration magnitude of tubes in the economizer tube free lane region. The objective of this experiment is to demonstrate that the tube displacement is less than 0.01 inch rms at 100% of full power flow and to quantify the remaining design margin at 120ft and 140% of full power flow.

  • PDF