• Title/Summary/Keyword: PowerFLOW

Search Result 6,124, Processing Time 0.031 seconds

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

Optimal Governor Response Power Flow with Nonlinear Interior Point Method (비선형 내점법을 이용한 최적 조속기 응동 조류계산)

  • Kim, Tae-Gyun;Lee, Byong-Joon;Song, Hwa-Chang;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1527-1534
    • /
    • 2007
  • This paper proposes a new concept of optimal governor-response power flow (OGPF) to obtain an optimal set of control parameters when the systems are in mid-term conditions after disturbances, ignoring the system dynamics. The idea of GOPF simply comes from the attempt to find an optimal solution of the governor-response power flow (GPF), which is a pre-exiting tool that is used to get power flow solutions that would exist several seconds after an event is applied. GPF incorporates the simplified model of governors in the systems into the power flow equations. This paper explains the concept of OGPF and depicts the OGPF formulation and application of a nonlinear interior point method as the solution technique. Also, this paper includes an example with New England 39-bus test system to illustrate the effectiveness of GOPF.

A Study on the Learning GUI for the Load Flow of Power System (전력조류계산을 위한 학습용GUI에 관한 연구)

  • Lee, Hee-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.27-29
    • /
    • 2004
  • This paper presents improved teaching and learning Gill for easily analysis tool of load flow of power system. This GUI includes not only contingency analysis function, but also calculating power loss from transmission line flow. The Gill is friendly for study for power system operation and control because picture provide a better visualizing of relationships between input parameters and effect than a tabula type result. This Gill enables topology and the output data of load flow for line outages to be shown on same picture page. Users can input the system data for power flow on the the picture and can easily see the the result diagram of bus voltage, bus power, line flow. It is also observe the effects of different types of variation of tap, shunt capacitor, loads level, line outages. Proposed Gill has been studied on the Ward-Hale 6-Bus system.

  • PDF

A Study on Vibration Power Flow of Truss Core Type Sandwich Plate Structure (트러스코어형 샌드위치 판구조물의 진동파워흐름에 관한 연구)

  • 구경민;김동영;홍도관;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.863-866
    • /
    • 2002
  • In this study, we tried to grasp the characteristic of vibration power flow for the truss core type sandwich plate structure. As the result of the finite element analysis, this paper shows that the vibration power flow characteristic of truss core type sandwich plate structure is understood and the vibration power flow of upper plate according to the mode shape of structure is various. Also it presents the vibration power flow is affected by reinforced structure.

  • PDF

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.

UPFC Controller Design and Simulation Model (UPFC의 제어기 설계와 시뮬레이션 모델)

  • 한병문;박덕희;박지용
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.49-54
    • /
    • 1998
  • This paper describes a simulation model to analyze the dynamic performance of Unified Power Flow Controller, which adjust flexibly the active and reactive power flow through the ac transmission line. The basic operation was analyzed in detail using equivalent circuits and the design of control system was developed using vector control method. A simulation model with EMTP code was conceived to evaluate the performance of the Unified power Flow Controller. The simulation results show that the developed simulation model is very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF

The Study on a Flow-rate Calculation Method by the Pump Power in the Axial Flow Pumps (축류형 펌프에서 펌프전력을 이용한 유량산정 방범에 관한 연구)

  • Lee, Jun;Seo, Jae-Kwang;Park, Chun-Tae;Kim, Young-In;Yoon, Ju-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.227-231
    • /
    • 2004
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the steam generator or the pump whose type is the axial flow. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of the pump power of the axial flow pump has been introduced in this study. Up to now, we did not found out a precedent which the pump power is used for the flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the flow-rate calculation method by the measurement of the pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs. So, it has been concluded that it is possible to calculate the flow-rate by the measurement of the pump motor inputs.

  • PDF

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

A Study on the Development of Improved Visualization Software of GUI based for Load Flow of Power System (개선된 GUI기반의 전력조류분석용 소프트웨어개발에 관한 연구)

  • 이희영
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.611-620
    • /
    • 2003
  • This paper presents improved GUI based analysis tool o( load flow of power system (or contingency. It is effective tool to facilitate the teaching and learning of load flow of power system. This software is the named of PFGUI(Power Flow GUI) that written in TooIBookII of Asymetrix. The PFGUI is friendly for study for power system operation and control because picture provide a better visualizing of relationships between input parameters and effects than a tabula type result. This PFGUI enables topology and the output data of load flow for line outages to be shown on same picture page. Users can input the system data for power flow on the the picture and can easily see the the result diagram of bus voltage, bus power, line flow. It is also observe the effects of different types of variation of tap, shunt capacitor, loads level, line outages. Proposed PFGUI has been studied on the Ward-Hale 6-Bus system.

  • PDF

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.