• Title/Summary/Keyword: Power-mass ratio

Search Result 256, Processing Time 0.025 seconds

Treatment of ETA wastewater using GAC as particle electrodes in three-dimensional electrode reactor (활성탄 충진 3D 복극전기분해조를 이용한 ETA 처리)

  • Kim, Ran;Kim, Yu-Jin;Shin, Ja-Won;Kim, Jeong-Joo;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.241-249
    • /
    • 2013
  • Ethanolamine (ETA) is widely used for alkalinization of water in steam cycles of nuclear power plants with pressurized water reactor. When ETA contained wastewater was released, it could increase COD and T-N. The treatment of the COD and T-N from ETA wastewater was investigated using the GAC as particle electrodes in three-dimensional electrode reactor (TDE). This study evaluated the effectiveness of GAC as particle electrode using different packing ratio at 300 V. The results showed that GAC-TDE could reduce ETA much more efficiently than ZVI-TDE at the mass ratio of GAC to insulator, 1:2. Additionally, The effect of applied electric potential to COD and T-N reduction was investigated. The results showed the high COD, T-N reduction and current efficiency at the low electric potential. Using the GAC-TDE will provide a better ETA reduction with reducing electrical potential dissipation.

The Development of 12.1' SVGA Reflective Color Thin Film Transistor Liquid Crystal Display with The New Structured Reflector and Optimized Optical Films

  • Shin, Jong-Eup;Joo, Young-Kuil;Jang, Yong-Kyu;Kang, Myeon-Koo;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.19-20
    • /
    • 2000
  • We have developed the 12.1" SVGA reflective type color TFT-LCD(Thin Film Transistor - Liquid Crystal Display) with the high aperture ratio and well designed reflector for the applications such as mini note PC, Note PC and electronic book. The panel shows the high reflectance(30%) and contrast ratio(20:1) resulted from optimizing the optical films and designing the embossing shaped reflector. By improving the chromacity, the color reproducibility was increased up to 20%. As removing the backlight unit, we reduced the power consumption, thickness and weight of the panel to 0.8W, 2.2mm, and 250gram, respectively. According to the above performances, we have obtained fabrication process for mass production, and furthermore, could have access to fast market launching.

  • PDF

Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC) (유기 플래쉬 사이클(OFC)의 열역학적 성능 특성)

  • Kim, Kyounghoon;Jung, Youngguan;Park, Sanghee
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • Recently a novel cycle named organic flash cycle (OFC) has been proposed which has improved potential for power generation from low-temperature heat sources. This study carries out thermodynamic performance analysis of OFC using various working fluids for recovery of low-grade heat sources in the form of sensible energy. Special attention is focused on the optimum flash temperature at which the exergy efficiency has the maximum value. Under the optimal conditions with respect to the flash temperature, the thermodynamic performances of important system variables including mass flow ratio, separation ratio, heat addition, specific volume flow rate at turbine exit, and exergy efficiency are thoroughly investigated. Results show that the exergy efficiency has a peak value with respect to the flash temperature and the optimum working fluid which shows the best exergy efficiency varies with the operating conditions.

Analysis of Driving Characteristics and Memory Effect by Occupation Area Evaluation Method of Charged Particle Type Display Device (대전입자형 디스플레이 소자의 점유면적 평가방법에 의한 구동특성 및 메모리 효과 분석)

  • Kim, Jin-Sun;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.669-673
    • /
    • 2011
  • The charged particle type display is a kind of the reflectivity type display and shows an image by absorption and reflection of external light source, which has keep an image without additional electric power because of bistability. In this paper, we made a device whose cell gap is $56\;{\mu}m$ and also analyzed driving and memory characteristics by applied driving voltages. As a result, we found that the driving voltage and memory effect depend on q/m(charge to mass ratio) of charged particle. In this case of breakdown voltage, the devices showed degradation of reflectivity and memory effect due to irregular movement of overcharged particles. In addition, contrast ratio of the device varies with memory effect. Thus, we consider that device needs uniform q/m for improvement of electric and optical properties and memory effect.

Dynamic Modeling of Gasification Reactions in Entrained Coal Gasifier (석탄 가스화 반응의 동적 거동 전산 모사)

  • Chi, Jun-Hwa;Oh, Min;Kim, Si-Moon;Kim, Mi-Young;Lee, Joong-Won;Kim, Ui-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.386-401
    • /
    • 2011
  • Mathematical models for various steps in coal gasification reactions were developed and applied to investigate the effects of operation parameters on dynamic behavior of gasification process. Chemical reactions considered in these models were pyrolysis, volatile combustion, water shift reaction, steam-methane reformation, and char gasification. Kinetics of heterogeneous reactions between char and gaseous agents was based on Random pore model. Momentum balance and Stokes' law were used to estimate the residence time of solid particles (char) in an up-flow reactor. The effects of operation parameters on syngas composition, reaction temperature, carbon conversion were verified. Parameters considered here for this purpose were $O_2$-to-coal mass ratio, pressure of reactor, composition of coal, diameter of char particle. On the basis of these parametric studies some quantitative parameter-response relationships were established from both dynamic and steady-state point of view. Without depending on steady state approximation, the present model can describe both transient and long-time limit behavior of the gasification system and accordingly serve as a proto-type dynamic simulator of coal gasification process. Incorporation of heat transfer through heterogenous boundaries, slag formation and steam generation is under progress and additional refinement of mathematical models to reflect the actual design of commercial gasifiers will be made in the near futureK.

Conceptual Design for Small Solar Powered Uninhabited Aerial Vehicle (소형 태양광 무인항공기의 개념 설계)

  • Lee, Sang-Hyup;Park, Sang-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Several studies on the development for solar powered uninhabited aerial vehicles(UAVs) are under way as the use of the renewable energy becomes more and more important these days. This paper is for the conceptual design by a discrete and iterative method. An initial design point with 1.5 meter wing span is determined in the global design, which deploys the mass and energy balances among each component of UAV including solar cells and airframe. Then, the iteration for subsystems is carried out with the help of Vortex Lattice Method(VLM) to optimize the aircraft configuration and the solar power system. It is demonstrated in simulations that the optimized design increases the flight time from 62 to 120 minutes when the solar power system is installed. Also, the associated dynamic analysis reveals that the designed small aircraft has the acceptable stability and controllability.

Etching Characteristics of ZnO Thin Films Using Inductively Coupled Plasma of HBr/Ar/CHF3 Gas Mixtures (HBr/Ar/CHF3 혼합가스를 이용한 ZnO 박막의 유도결합 플라즈마 식각)

  • Kim, Moon-Keun;Ham, Young-Hyun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.915-918
    • /
    • 2010
  • In this work, the etching characteristics of ZnO thin films were investigated using an inductively coupled plasma(ICP) of HBr/Ar/$CHF_3$ gas mixtures. The plasma characteristics were analyzed by a quadrupole mass spectrometer (QMS) and double langmuir probe (DLP). The surface reaction of the ZnO thin films was investigated using X-ray photoelectron spectroscopy (XPS). The etch rate of ZnO was measured as a function of the $CHF_3$ mixing ratio in the range of 0-15% in an HBr:Ar=5:2 plasma at a fixed gas pressure (6mTorr), input power (700 W), bias power (200 W) and total gas flow rate(50sccm). The etch rate of the ZnO films decreased with increasing $CHF_3$ fraction due to the etch-blocking polymer layer formation.

A Study on the Heat Transfer Enhancement of Miniature loop Heat Pipes by Using the Cu Nanofluids

  • Kim, Young-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Tanshen, Md.Riyad;Lee, Dae-Chul;Ji, Myoung-Kuk;Bae, Kang-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • An experimental study was carried out to understand the heat transfer performance of a miniature loop heat pipes using water-based copper nanoparticles suspensions as the working fluid. The suspensions consisted of deionized water and copper nanoparticles with an average diameter of 80 nm. Effects of the cupper mass concentration and the operation pressure on the average evaporation and condensation heat transfer coefficients, the critical heat flux and the total heat resistance of the mLHPs were investigated and discussed. The pressure frequency also depends upon the evaporator temperature which has been maintained from $60^{\circ}C$ to $90^{\circ}C$. The Investigation shows 60% filling ratio gives the highest inside pressure magnitude of highest number pressure frequency at any of setting of evaporator temperature and 5wt% results the lowest heat flow resistance.

Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing (분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

Cycle performance of refrigeration and air-conditioning system using the hydrocarbon refrigerant R-290 (탄화수소계 냉매 R-290을 사용하는 냉동.공조 장치의 사이클 특성에 관한 연구)

  • 박기원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.447-452
    • /
    • 1999
  • This paper describes the cycle performance of heat-pump system using R-22 and R-290. Experiments were performed in the smooth tube with inside diameter of 10.07mm and outside diameter of 12.07 mm and grooved inner tube having 75 fins with a height of 0.25mm Condensing temperatures were held constantly between 318K and 328 K while evaporating temperatures were varied from 257 K to 288 K mass velocities from 51 to $280 kg/m^2s$. From the experiments it was known that the evaporating temperature and condensing temperature had more affected by the compressor shaft power than the tube geometries. Cooling capacity of the R-22 and R-290 had similar values in the smooth and grooved inner tubes. The coefficient of performance(COP) was calculated using the compressor shaft power volumetric refrigeration capacity compression ratio and cooling capacity. The COP of the R-290 had slightly higher values than that of R-22 The major parameters affecting the heat pump cycle performance wee the refrigerant proper-ties and operating conditions rather than the geometric shapes of the heat exchanger

  • PDF