• Title/Summary/Keyword: Power-level control

Search Result 1,739, Processing Time 0.041 seconds

A NOVEL NEURAL-NETWORK BASED CURRENT CONTROL SCHEME FOR A THREE-LEVEL CONVERTER

  • Choi, J.Y.;Song, J.H.;Choy, I.;Gu, S.W.;Huh, S.H.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.352-356
    • /
    • 1997
  • This paper present the design of a novel neural-network (NN) based pulse-width modulation (PWM) techniques for a three-level power converter of electric trains along with nonlinear mapping of essential switching patterns and fault tolerance, which are inherent characteristics of NNs. Considering the importance of safety, power factor and harmonics of electric train power converters, two-level type and three-level type of power converters using NNs are precisely investigated and compared in computer simulation. A computer simulation shows that a new current control scheme provides an improved performance over a fixed-band hysteresis current control in many aspects.

  • PDF

Automatic Command Mode Transition Strategy of Direct Power Control for PMSG MV Offshore Wind Turbines (자동 지령모드절환 기능을 갖춘 PMSG MV 해상 풍력 발전기의 직접전력제어 방법)

  • Kwon, Gookmin;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.238-248
    • /
    • 2016
  • In this study, an automatic command mode transition strategy of direct power control (DPC) is proposed for permanent magnet synchronous generators (PMSGs) medium-voltage (MV) offshore wind turbines (WTs). Benchmarking against the control methods are performed based on a three-level neutral-point-clamped (NPC) back-to-back type voltage source converter (VSC). The ramping rate criterion of complex power is utilized to select the switching vector in DPC for a three-level NPC converter. With a grid command and an MPPT mode transition strategy, the proposed control method automatically controls the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. The automatic command mode transition strategy of DPC is confirmed through PLECS simulations based on Matlab. The simulation result of the automatic mode transition strategy shows that the proposed control method of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control methods of MPPT and VOC under a step response. The proposed control method helps provide a good dynamic performance for PMSGs MV offshore WTs, thereby generating high quality output power.

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

A Study on Turbine Auxiliary Devices in a Thermal Power Plant (화력발전소 터빈 보조기기 제어 관한 고찰)

  • Jeong, Chang-Ki;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1667-1668
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Turbine auxiliary devices such as condenser, deaerator, feed water heater, gland steam condenser, pump recirculation equipment, feed water pump, and so on should be operated well so that the steam turbine exert its maximum efficiency. There are many control loop such as hot well level and condenser recirculation, deaerator level, pegging steam pressure, feed water heater level, feed water pump recirculation. In this paper condenser level control and deaerator level control are going to be described.

  • PDF

Improvement in power plant feed water system (발전소의 급수 제어시스템의 개선)

  • 배영환;황재호;서진헌
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.553-556
    • /
    • 1989
  • Nowadays in power plant feed water control, it is very important to retain the stable drum level though power changes very fast. For the stable drum level in power plant, we have to model our plants and get the system functions. We make the L.Q. controller by using these functions and apply it to these systems. And we get the more stable drum level which is controlled by feed water qualities.

  • PDF

D2D Power Control in the Cellular System: Non Cooperative Game Theoretic Approach

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2018
  • In this paper, we consider the game theoretic approach to investigate the transmit power optimization problem where D2D users share the uplink of the cellular system. Especially, we formulate the transmit power optimization problem as a non cooperative power control game. In the user wide sense, each user may try to select its transmit power level so as to maximize its utility in a selfish way. In the system wide, the transmit power levels of all users eventually converge to the unique point, called Nash Equilibrium. We first formulate the transmit power optimization problem as a non cooperative power control game. Next, we examine the existence of Nash Equilibrium. Finally, we present the numerical example that shows the convergence to the unique transmit power level.

Automatic RF Input Power Level Control Methodology for SAR Measurement Validation

  • Kim, Ki-Hwea;Choi, Dong-Geun;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Evaluation of radiating radiofrequency fields from hand-held and body-mounted wireless communication devices to human bodies are conducted by measuring the specific absorption rate (SAR). The uncertainty of system validation and probe calibration in SAR measurement depend on the variation of RF power used for the validation and calibration. RF input power for system validation or probe calibration is controlled manually during the test process of the existing systems in the laboratories. Consequently, a long time is required to reach the stable power needed for testing that will cause less uncertainty. The standard uncertainty due to this power drift is typically 2.89%, which can be obtained by applying IEC 62209 in a normal operating condition. The principle of the Automatic Input Power Level Control System (AIPLC), which controls the equipment by a program that maintains a stable input power level, is suggested in this paper. The power drift is reduced to less than ${\pm}1.16dB$ by AIPLC, which reduces the standard uncertainty of power drift to 0.67%.

The level control of steam generator in nuclear power plant by neural network 2-DOF PID controller (신경망 2-자유도 PID제어기를 이용한 원자력 발전소용 증기 발생기 수위제어)

  • Kim, Dong-Hwa;Lee, Won-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.321-328
    • /
    • 1998
  • When we control the level of the steam generator in the nuclear power plants, a swell and shrink arises from many disturbances such as feed water rate, feed water temperature, main steam flow rate, and coolant temperature. If we use the conventional type of PI controller in this system, we will not have stability during controlling at lower power, the removal function of disturbances, and a load follow-up control effectively. In this paper, we study the application of a 2-Degree of Freedom(2-DOF) PID controller to the level control of the steam. generator of nuclear power plants through the simulation and the experimental steam generator. We use the parameters $\alpha$, $\beta$, $\gamma$ of the 2-DOF PID controller for the removal of disturbances and the parameters Kp,Ti,Td of the conventional type of PID controller for controlling setpoint. The back-propagation learning algorithm of neural network is used for tuning the 2-DOF PID controller. We can find satisfactory results of the removal of the disturbances and the tracking function in the change of setpoint through the simulation and experimental steam generator.

  • PDF

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

A study on power control of nuclear reactor using revised two-level costate prediction method (개선된 two-level costate prediction method를 이용한 원자로 출력 제어)

  • 천희영;박귀태;이희정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.244-247
    • /
    • 1986
  • A revised two-level costate prediction algorithm is developed for the optimization of nonlinear nuclear power plant. The algorithm is proved to converge very well, and appears to require substantially small computation time and storage than previous nonlinear optimization algorithm. To cope with unknown external disturbances, we construct a closed loop control system. In order to get a smaller sampling time, this paper proposes the two-level Kalman filter.

  • PDF