• Title/Summary/Keyword: Power-aware Scheduling

Search Result 41, Processing Time 0.024 seconds

Joint User Scheduling and Power Control Considering Both Signal and Interference for Multi-Cell Networks (다중 셀 상향링크 네트워크에서 신호와 간섭을 동시에 고려하는 전력 제어 및 사용자 스케쥴링)

  • Cho, Moon-Je;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.477-483
    • /
    • 2016
  • In this paper, we propose a distributed user scheduling with interference-aware power control (IAPC) to maximize signal to generating interference plus noise ratio (SGINR) in uplink multi-cell networks. Assuming that the channel reciprocity time-division duplexing (TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. In the proposed scheduling, to be specific, each user reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest SGINR among users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms. It is worth noting that the proposed technique operates with distributed manner without information exchange among cells. Hence, it can be easily applied to the practical wireless systems like 3GPP LTE without significant modifications of the specification.

QoS Adaptive Inter-piconet Scheduling in Bluetooth Scatternet for Wireless PANs

  • Kim Tae-Suk;Kim Sehun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.345-348
    • /
    • 2004
  • Every bridge node participating in multiple piconets and forming a scatternet should schedule the inter-piconet traffics in an efficient manner. Frequent piconet switching due to short polling intervals for the links of a bridge node leads to considerable time slots loss caused by the guard time and power consumption for transceiving and processing. On the other hand, restrained piconet switching may result in failures of fulfilling QoS (Quality of Service) requirements for some links. Tn this paper, we present a QoS aware inter-piconet scheduling scheme minimizing the piconet switching events within guaranteed QoS requirements. According to simulation results, the proposed scheme is confirmed to have great improvement in throughput and number of switching events over the credit scheme as current inter-piconet scheduling scheme for the scatter mode.

  • PDF

Emotion-aware Task Scheduling for Autonomous Vehicles in Software-defined Edge Networks

  • Sun, Mengmeng;Zhang, Lianming;Mei, Jing;Dong, Pingping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3523-3543
    • /
    • 2022
  • Autonomous vehicles are gradually being regarded as the mainstream trend of future development of the automobile industry. Autonomous driving networks generate many intensive and delay-sensitive computing tasks. The storage space, computing power, and battery capacity of autonomous vehicle terminals cannot meet the resource requirements of the tasks. In this paper, we focus on the task scheduling problem of autonomous driving in software-defined edge networks. By analyzing the intensive and delay-sensitive computing tasks of autonomous vehicles, we propose an emotion model that is related to task urgency and changes with execution time and propose an optimal base station (BS) task scheduling (OBSTS) algorithm. Task sentiment is an important factor that changes with the length of time that computing tasks with different urgency levels remain in the queue. The algorithm uses task sentiment as a performance indicator to measure task scheduling. Experimental results show that the OBSTS algorithm can more effectively meet the intensive and delay-sensitive requirements of vehicle terminals for network resources and improve user service experience.

DVFS based Memory-Contention Aware Scheduling Method for Multi-threaded Workloads (멀티쓰레드 워크로드를 위한 DVFS 기반 메모리 경합 인지 스케줄링 기법)

  • Nam, Yoonsung;Kang, Minkyu;Yeom, HeonYoung;Eom, Hyeonsang
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • The task of consolidating server workloads is critical for the efficiency of a datacenter in terms of reducing costs. However, as a greater number of workloads are consolidated in a single server, the performance of workloads might be degraded due to their contention to the limited shared resources. To reduce the performance degradation, scheduling for mitigating the contention of shared resources is necessary. In this paper, we present the Dynamic Voltage Frequency Scaling (DVFS) based memory-contention aware scheduling method for multi-threaded workloads. The proposed method uses two approaches: running memory-intensive threads on the limited cores to avoid concurrent memory accesses, and reducing the frequencies of the cores that run memory-intensive threads. With the proposed algorithm, we increased performance by 43% and reduced power consumption by 38% compared to the Completely Fair Scheduler(CFS), the default scheduler of Linux.

Energy-aware Dalvik Bytecode List Scheduling Technique for Mobile Applications (모바일 어플리케이션을 위한 에너지-인식 달빅 바이트코드 리스트 스케줄링 기술)

  • Ko, Kwang Man
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.151-154
    • /
    • 2014
  • An energy of applications had consumed through the complexed inter-action with operating systems, run-time environments, compiler, and applications on various mobile devices. In these days, challenged researches are studying to reduce of energy consumptions that uses energy-oriented high-level and low-level compiler techniques on mobile devices. In this paper, we intented to reduce an energy consumption of Java mobile applications that applied a list instruction scheduling for energy dissipation from dalvik bytecode which extracted Android dex files. Through this works, we can construct the optimized power and energy environment on mobile devices with the limited power supply.

Link Scheduling Method Based on CAZAC Sequence for Device-to-Device Communication (D2D 통신 시스템을 위한 CAZAC 시퀀스 기반 링크 스케줄링 기법)

  • Kang, Wipil;Hwang, Won-Jun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.325-336
    • /
    • 2013
  • FlashLinQ, one of the typical D2D communication systems developed by Qualcomm, considers a single-tone communication based distributed channel-aware link scheduling method to realize the link scheduling process with low control overheads. However, considering the frequency selective fading effect of practical multi-path channel, the single-tone based SIR estimation causes a critical scheduling error problem because the received single-tone signal has quite different channel gain at each sub-carrier location. In order to overcome this problem, we propose a novel link scheduling method based on CAZAC (Constant Amplitude Zero Auto-Correlation) sequence for D2D communication system. In the proposed method, each link has a unique offset value set for the generation of CAZAC sequences. CAZAC sequences with the cyclic offsets are transmitted using multiple sub-blocks in the entire bandwidth, and then each device can obtain nearly full-band SIR using a good cyclic cross-correlation property of CAZAC sequence.

MIMO Techniques for Green Radio Guaranteeing QoS

  • Nicolaou, Marios;Han, Congzheng;Beh, Kian Chung;Armour, Simon;Doufexi, Angela
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.130-139
    • /
    • 2010
  • Environmental issues and the need to reduce energy consumption for lowering operating costs have pushed power efficiency to become one of the major issues of current research in the field of wireless networks. This paper addresses a number of multiple input multiple output (MIMO) precoding and scheduling techniques across the PHY and MAC layers that can operate under a reduced link budget and collectively improve the transmit power efficiency of a base station, while maintaining the same levels of service. Different MIMO transmission and precoding schemes proposed for LTE, achieving varying degrees of multiuser diversity in both the time, frequency as well as the space domain, are examined. Several fairness-aware resource allocation algorithms are applied to the considered MIMO schemes and a detailed analysis of the tradeoffs between power efficiency and quality of service is presented. This paper explicitly examines the performance of a system serving real-time, VoIP traffic under different traffic loading conditions and transmit power levels. It is demonstrated that by use of efficient scheduling and resource allocation techniques significant savings in terms of consumed energy can be achieved, without compromising QoS.

[ ${\mu}TMO$ ] Model based Real-Time Operating System for Sensor Network (${\mu}TMO$ 모델 기반 실시간 센서 네트워크 운영체제)

  • Yi, Jae-An;Heu, Shin;Choi, Byoung-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.630-640
    • /
    • 2007
  • As the range of sensor network's applicability is getting wider, it creates new application areas which is required real-time operation, such as military and detection of radioactivity. However, existing researches are focused on effective management for resources, existing sensor network operating system cannot support to real-time areas. In this paper, we propose the ${\mu}TMO$ model which is lightweight real-time distributed object model TMO. We design the real-time sensor network operation system ${\mu}TMO-NanoQ+$ which is based on ETRI's sensor network operation system Nano-Q+. We modify the Nano-Q+'s timer module to support high resolution and apply Context Switch Threshold, Power Aware scheduling techniques to realize lightweight scheduler which is based on EDF. We also implement channel based communication way ITC-Channel and periodic thread management module WTMT.

Energy-aware EDZL Real-Time Scheduling on Multicore Platforms (멀티코어 플랫폼에서 에너지 효율적 EDZL 실시간 스케줄링)

  • Han, Sangchul
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • Mobile real-time systems with limited system resources and a limited power source need to fully utilize the system resources when the workload is heavy and reduce energy consumption when the workload is light. EDZL (Earliest Deadline until Zero Laxity), a multiprocessor real-time scheduling algorithm, can provide high system utilization, but little work has been done aimed at reducing its energy consumption. This paper tackles the problem of DVFS (Dynamic Voltage/Frequency Scaling) in EDZL scheduling. It proposes a technique to compute a uniform speed on full-chip DVFS platforms and individual speeds of tasks on per-core DVFS platforms. This technique, which is based on the EDZL schedulability test, is a simple but effective one for determining the speeds of tasks offline. We also show through simulation that the proposed technique is useful in reducing energy consumption.

MAC Scheduling Algorithm for Efficient Management of Wireless Resources in Bluetooth Systems (블루투스 시스템에서의 효율적 무선자원관리를 위한 MAC 스케쥴링 기법)

  • 주양익;권오석;오종수;김용석;이태진;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.702-709
    • /
    • 2003
  • In this paper, we propose an efficient and QoS-aware MAC scheduling algorithm for Bluetooth, which considers both throughput and delay performance of each Master-Slave pair in scheduling decisions, and thus, attempts to maximize overall performance. The proposed algorithm, MTDPP (Modified Throughput-Delay Priority Policy), makes up for the drawbacks of T-D PP (Throughput-Delay Priority Policy) proposed in [6] and improves the performance. Since Bluetooth employs a master-driven TDD based scheduling algorithm, which is basically operated with the Round Robin policy, many slots may be wasted by POLL or NULL packets when there is no data waiting for transmission in queues. To overcome this link wastage problem, several algorithms have been proposed. Among them, queue state-based priority policy and low power mode-based algorithm can perform with high throughput and reasonable fairness. However, their performances may depend on traffic characteristics, i.e., static or dynamic, and they require additional computational and signaling overheads. In order to tackle such problems, we propose a new scheduling algorithm. Performance of our proposed algorithm is evaluated with respect to throughput and delay. Simulation results show that overall performances can be improved by selecting suitable parameters of our algorithm.