• 제목/요약/키워드: Power-Flow Analysis

검색결과 2,215건 처리시간 0.034초

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.

선로 조류 유지 기법에 근거한 계통축약 및 다변수 제어기법 적용 연구 (A study on application of aggregation method based on power flow matching technique and multi-variable control method to the power system)

  • 이병하;오민혁;백정명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.342-344
    • /
    • 2006
  • The modem enormous electric power system has made power system analysis much more complex and difficult. For effective analysis of the power system, model reduction and aggregation is required. In this paper, a new aggregation method is presented to aggregate the coherent generators in the large scale power system while matching the power flow. In order to demonstrate the effects of this aggregation method, it is applied to a small scale power system. A multi-variable control technique of $H_{\infty}$ control is also applied to enhance the dynamic stability of the aggregated power system.

  • PDF

전산유체역학을 활용한 원전용 밸브의 유량계수 산출에 대한 연구 (STUDY ON CALCULATION OF FLOW COEFFICIENT BY CFD FOR VALVE IN NUCLEAR POWER PLANT)

  • 김재형;이정희
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.54-60
    • /
    • 2016
  • The valve used in nuclear power plant must be qualified but the limitation of the test facility leads to use the numerical analysis. The flow coefficient is calculated with the consideration of the pressure, velocity and geometry. And the flow coefficient is the important physical property which is prepared using experiment or analysis by valve manufacturer. In this study, the analysis model was made according to ISA 75.02.01 and the mass flow rate and pressure drop ratio was calculated. The model of the expansion factor was applied to the simulation result and the pressure drop ratio at the start of the choked flow in the valve was found. With the simulation result, the consideration was performed that the expansion factor is the important physical property to the system engineer in addition to the flow coefficient.

UPFC의 동적 성능해석을 위한 시뮬레이션 모형 (Simulation Model for Dynamic Performance Analysis of UPFC)

  • 한병문;최대길;신익상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.479-481
    • /
    • 1996
  • This paper describes a simulation model to analyze the dynamic performance of Unified Power Flow Controller which ran flexibly adjust the active and reactive power flow through the ac transmission line. An equivalent circuit to analyze the basic principle for the whole system operation was developed and a control system for the Unified Power Flow Controller was derived using vector control method. A computer simulation model with EMTP code was also conceived to evaluate the performance of the Unified power Flow Controller. The simulation results show that Unified Power flow Controller is very effective for controlling the power flow and damping the subsynchronous resonance in the power system.

  • PDF

전력조류계산을 위한 SSSC모델의 개발과 연속조류계산 알고리듬에의 적용 (Development of SSSC Power Flow Model and its Implementation into Continuation Power Flow Algorithm)

  • 김슬기;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1158-1160
    • /
    • 1999
  • This paper proposes a SSSC(Static Synchronous Series Compensator) power flow model to be incorporated into power flow calculation for the steady state analysis of the power system. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. In this paper the static model is implemented into the continuation power-flow (CPF) program. It is shown that SSSC has its intrinsic superiority over TCSC in controllable power flow range.

  • PDF

A Study on the Method of the Vulnerable Area Investigation In Severe Contingencies Using Branch Parameter Continuation Power Flow (BCPF)

  • Seo Sangsoo;Lee Byongjun;Kim Tae-Kyun;Song Hwachang
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.390-395
    • /
    • 2005
  • The most widely used index for the vulnerable area investigation has been the reactive power margin or sensitivity analysis. But we can only obtain the results of these analyses if the results of load flow are convergent in severe contingencies. Otherwise these methods are not adoptable. This paper presents a good index for overcoming severe contingencies, though the power flow equation is unsolvable using the branch parameter continuation power flow. In simulation, the Korea Electric Power Corporation (KEPCO) Systems are applied.

객체지향기법을 이용한 3상 배전 계통 조류계산 Software의 개발 (Development of Three Phase Power Flow Analysis Software using Object-oriented Programming in Distribution System)

  • 엄재필;최정환;김광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.507-509
    • /
    • 2000
  • This study developed the window based power flow analysis software for distribution system. This system was developed by using Visual C++ 6.0 in Microsoft Windows 98 environment; therefore, it utilized many advantages of window based programming for providing user-friendly interface. The backward/forward sweep algorithm is implemented in this software for power flow analysis. Especially, this software includes the newly developed classes of complex function, matrix function, and power flow calculation procedure, so it has high flexibility for enhancement and modifications.

  • PDF

상이형전자계산기에 의한 영월.부평간 송전계통의 과도안전도 해석 (Transient stability analysis of the Yongwol.Bupyong power system by electronic analog computer techniques)

  • 한만춘
    • 전기의세계
    • /
    • 제15권1호
    • /
    • pp.14-19
    • /
    • 1966
  • Transient stability analysis of Yongwol-Bupyong power system, which contains Yongwol steam power station, the largest one in Korea, was undertaken by using the Yonsei 101 Analog computer. The critical switching time and phase angle for the present 150MW power flow to be stable were found. And the transient stability power limit for the system was also found. It is concluded that the system becoms unstable if the power flow increases much more than 151MW.

  • PDF

선박용 발전기 동기화시의 과도현상 해석에 관한 연구 (A Study on the Transient Phenomenon Analysis of Ship Generator Synchronization)

  • 오세진;김종수;김성환;이성근;조성갑
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.998-1004
    • /
    • 2007
  • Connecting a synchronous generator to a power system is a dynamic process, requiring the coordinated operation of many components and systems. The goal is to connect the oncoming generator to the system smoothly i.e without causing any significant bumps, surges, or power swings, by closing the ACB when the oncoming generator matches the power system in voltage magnitude, phase angle, and frequency. If oncoming generator voltage is not matched to the power system voltage, reactive power will flow either into or out of the system at the instant of ACB closure. If this voltage difference is too great, the reactive power flow may result in high transient stresses that could damage the windings of the generator. Also, if oncoming generator frequency is not matched to the power system frequency, transient power will flow between generator and power system. If the frequency difference is too great, the transient power flow is reflected into the prime mover shaft, and this may result in excessive shaft or coupling stress. This paper tries to prove the necessity of correct synchronization for ship generators through a transient phenomenon analysis.

G7 동력차 동력실 유동해석을 통한 루프후드 구조 연구 (The study for roof hood structure of G7 power car engine compartment using air flow analysis.)

  • 박광복;장규호;이동훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.634-644
    • /
    • 2000
  • The study was carried out about the roof hood structure of power car for Korean High Speed Train. The compatibility for applied material and volume of hood duct was studied using analysis about heat and flow distributions. The materials and volume of duct were mainly determined by output air temperature and flow rate of each electric blocks. This report was described, which focuses on pressure distribution and air temperature within engine compartment of power car.

  • PDF