• Title/Summary/Keyword: Power-Efficient Routing Protocol

Search Result 94, Processing Time 0.034 seconds

Efficient USN Routing Protocol using Sub-Clustering

  • Jeong, Su-Hyung;Yoo, Hae-Young
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.466-469
    • /
    • 2008
  • The existing routing protocols in USN environment, PEGASIS is more efficient than LEACH, which is a hierarchical routing protocol, for network configuration based on power consumption. Despite its merit that it can reduce energy consumption per node, however, the PEGASIS protocol also has a weakness that it is less responsive to frequent changes that occur in the configuration of sensor network due to BS nodes that keep changing, which is a typical characteristic of the sensor network. To address this problem, this paper proposes to select sub-cluster heads and have them serve as intermediate nodes. This paper presents and analyses that this method can resolve the aforementioned problem of the PEGASIS algorithm.

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.

Building Efficient Multi-level Wireless Sensor Networks with Cluster-based Routing Protocol

  • Shwe, Hnin Yu;Kumar, Arun;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4272-4286
    • /
    • 2016
  • In resource constrained sensor networks, usage of efficient routing protocols can have significant impact on energy dissipation. To save energy, we propose an energy efficient routing protocol. In our approach, which integrates clustering and routing in sensor networks, we perform network coding during data routing in order to achieve additional power savings in the cluster head nodes. Efficacy of the proposed method in terms of the throughput and end-to-end delay is demonstrated through simulation results. Significant network lifetime is also achieved as compared with other techniques.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Routing protocol for efficient power consumption of sensor node (센서노드의 효율적인 전력소모를 위한 라우팅 프로토콜 연구)

  • Kim, Ki-Tae;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.382-385
    • /
    • 2011
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on sensor network is proceeding actively which is composed many different sensor node. One of the important condition for design of sensor node is to extend for network life which is to minimize power-consumption under the limited resources of sensor network. This study suggest routing protocol that was used second level cluster structure to reduce power-consumption of sensor node. the first level use the previous routing protocol under the LEACH, second level decide to transmit or not by comparision of data value for Effective Usage, reduce the unnecessary power-consumption.

  • PDF

An Energy Efficient Routing Protocol for Unicast in Wireless Sensor Networks (무선 센서 네트워크에서 유니캐스트를 위한 에너지 효율적인 라우팅 프로토콜)

  • Han, Uk-Pyo;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2007
  • The efficient node-energy utilization in wireless sensor networks has been studied because sensor nodes operate with limited power based on battery. To extend the lifetime of the wireless sensor networks, maintaining balanced power consumption between sensor nodes is more important than reducing total energy consumption of the overall network. Since a large number of sensor nodes are densely deployed and collect data by cooperation in wireless sensor network, keeping more sensor nodes alive as possible is important to extend the lifetime of the sensor network. In this paper, we submit an efficient energy aware routing protocol based on AODV ad hoc routing protocol for wireless sensor networks to increase its lifetime without degrading network performance. The proposed protocol is designed to avoid traffic congestion on minor specific nodes at data transfer and to make the node power consumption be widely distributed to increase the lifetime of the network. The performance of the proposed protocol has been examined and evaluated with the NS-2 simulator in terms of network lifetime and end-to-end delay.

Power based Routing Scheme for wireless sensor networks (무선 센서네트워크에서의 전력기반 라우팅기법)

  • Ernest, Mugisha;Lee, Geun-Soo;Kim, Namho;Yu, Yun-Seop;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.657-658
    • /
    • 2015
  • In an wireless sensor network, energy efficient routing protocol is important for multi-hop transmission because senor nodes are powered by battery. In multi-hop transmission, specifice nodes are used and the battery power becomes low, it induce the asymetric remaining power among the nodes and makes the network lifetime reduced. In this paper, we propose a power-aware routing protocol which determines the routing path considering the remaining power of the nodes. Simulation results shows that the proposed routing scheme minimize the transmission delay and increase the network lifetime.

  • PDF

Route Selection Protocol based on Energy Drain Rates in Mobile Ad Hoc Networks (무선 Ad Hoc 통신망에서 에너지 소모율(Energy Drain Rate)에 기반한 경로선택 프로토콜)

  • Kim, Dong-Kyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.451-466
    • /
    • 2003
  • Untethered nodes in mobile ad-hoc networks strongly depend on the efficient use of their batteries. In this paper, we propose a new metric, the drain rate, to forecast the lifetime of nodes according to current traffic conditions. This metric is combined with the value of the remaining battery capacity to determine which nodes can be part of an active route. We describe new route selection mechanisms for MANET routing protocols, which we call the Minimum Drain Rate (MDR) and the Conditional Minimum Drain Rate (CMDR). MDR extends nodal battery life and the duration of paths, while CMDR also minimizes the total transmission power consumed per packet. Using the ns-2 simulator and the dynamic source routing (DSR) protocol, we compare MDR and CMDR against prior proposals for power-aware routing and show that using the drain rate for power-aware route selection offers superior performance results.

A Study on an AODV Routing Protocol with Energy-Efficiency (에너지 효율을 고려한 AODV 라우팅 프로토콜에 관한 연구)

  • Hwang, Tae Hyun;Kim, Doo Yong;Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.17-22
    • /
    • 2015
  • In recent years, wireless sensor networks have become an important part of data communications. Sensors provide information about the required measurements or control states over wireless networks. The energy efficient routing protocol of wireless sensor networks is the key issue for network lifetimes. The routing protocol must ensure that connectivity in a network is remained for a long period of time and the energy status of the sensor in the entire network must be in the same level in order not to leave the network with a wide difference in the energy consumptions of the sensors. In this paper we propose a new routing protocol based on AODV protocol that considers the energy efficiency when the protocol determines the routing paths, which is called AODV-EE. The proposed method prevents an imbalance of power consumption in sensors of wireless networks. From the simulation results it is shown that the proposed algorithm can be effectively used in collecting and monitoring data without concerning about the disconnection of the networks.

Cluster-Based Power-Efficient Routing Protocol for Sensor Network (센서 네트워크를 위한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • 권기석;이승학;윤현수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.508-510
    • /
    • 2004
  • 센서 네트워크는 관심이 있는 현상을 관찰하기 위해서 관찰지역 내에 뿌려진 센서 노드들로 구성된다. 센서 네트워크를 구성하는 각 센서 노드들의 수명은 전체 센서 네트워크 수명에 많은 영양을 준다. 하나의 센서 노드가 수명을 다 했을 때 이는 센서 네트워크의 분할을 가져 올 수도 있다. 그러므로 모든 센서 노드들이 공평하게 다 같이 오래 사는 것이 전체 센서 네트워크의 수명을 연장하는 것이다. 이 논문에서 우리는 클러스터 기반의 에너지 효율적인 라우팅 프로토콜(Cluster-eased Power-Efficient Routing Protocol CBPER)을 제안하였다. 제안된 프로토콜은 여러 개의 유동성 싱크 노드를 가진 센서 네트워크에서 에너지 효율적인 데이터 전송을 지원하며 효율적인 라우팅을 위해서 각 센서 노드의 위치정보를 기반으로 만든 그리드 구조를 이용한다. 제안된 프로토콜의 성능을 평가하기 위해서 두 계층 데이터 전송 라우팅 (Two-Tier Data Dissemination Routing: TTDD) 프로토콜과 비교를 하였다. 실험결과는 CBPER 프로토콜이 TTDD 라우팅 프로토콜 보다 좀 더 에너지 효율적이라는 결과를 보여 준다.

  • PDF