• 제목/요약/키워드: Power upgrading

검색결과 78건 처리시간 0.034초

A Systematic Literature Review of the Environmental Upgrading in Global Value Chains and Future Research Agenda

  • Khattak, Amira;Pinto, Luisa
    • 유통과학연구
    • /
    • 제16권11호
    • /
    • pp.11-19
    • /
    • 2018
  • Purpose - The purpose of this study is to provide a systematic literature review related to environmental upgrading in Global Value Chains (GVCs) and suggest possible future research agendas in advancing environmental upgrading and ultimately GVC boundaries. Research design, data, and methodology - The academic databases such as Science Direct, EBSCO, ProQuest and Google Scholar were explored using a structured keywords searches to identify relevant research in the environmental upgrading area in GVCs. Only relevant papers were selected after reading the abstracts, and analyzed using qualitative content analysis. Results - Overall analysis of the literature review suggests two critical developments in the field of environmental upgrading. The first and foremost major development is an enhanced understanding of environmental upgrading as a concept and phenomenon. The second significant development is that environmental upgrading has been empirically proven to be fundamentally based on relationships and power structures within GVCs. Conclusions - Environmental upgrading in GVCs has been studied individually and not in relation to financial outcomes and social upgrading. Hence, the relationship of environmental upgrading with financial outcomes and social upgrading needs to be investigated. Furthermore, the impact of the interaction of varying institutional structures on environmental upgrading is worthy of future study.

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

초전도한류기의 계통도입을 위한 경제적 타당성 검토 (A Economic feasibility of Superconducting Fault Current Limiter in Korean Power System)

  • 김종율;이승렬;윤재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.421-423
    • /
    • 2004
  • As power system grows more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154kV system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154kV Superconducting Fault Current Limiter(SFCL) to 154kV transmission systems is proceeding with implementation slated for after 2010. In this paper, the expected price of SFCL in order to assure the economic feasibility is evaluated comparing with upgrading cost of ciui.1 breakers. The results show that the SFCL should be developed under seven times of price of circuit breaker to be competitive against upgrading circuit breakers.

  • PDF

Feasibility Study of Superconducting Fault Current Limiter Application to Korean Power System

  • Kim, Hak-Man;Kim, Jong-Yul
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.103-106
    • /
    • 2003
  • The short circuit current problem is one of the operational problems that need to be solved by power system engineers in Korea. It is an important issue in the Seoul metropolitan area especially because of highly meshed configuration. Currently, it is regulated by changing 154 kV system configuration from loop connection to radial system, by splitting of the bus where load balance can be achieved, and by upgrading circuit breaker rating. A development project for 154 kV/2 KA SFCL application to 154 kV transmission system after 2010 is proceeding. In this paper, a feasibility study of superconducting fault current limiter (SFCL) is carried out in Seoul metropolitan area to find out the effects of its application and feasibility. This study shows that it can reduce fault current considerably, and as it can minimize the upgrading of circuit breaker rating, the economic potential of SFCL is evaluated positively.

바이오가스 정제 및 고질화 기술 현황 및 전망 (The Present and the Future of Biogas Purification and Upgrading Technologies)

  • 허남효;박재규;김기동;오영삼;조병학
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

송전철탑 Compact화에 따른 전기환경 영향 연구 (A Study on the Environmental Effects of Compact Tower in Transmission Line)

  • 이정원;이원교;이동일
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.645-650
    • /
    • 2010
  • The continuous increase demand for electric power leads to the additional construction of transmission facilities, but it is not easy to acquire right-of-way for transmission facilities. Therefor, there is a need for compact tower that can be built on a narrow right-of-way the compact tower with polymer insulation arm is a solution. It can be upgrading conventional 154 kV transmission line voltages to 345 kV levels. However transmission voltage is increasing, environment interference (corona noise, radio interference, etc.) will occur gradually. This environment interference is depending on the electrical clearances of tower and configuration of conductors. Therefore the analysis of the factors of environmental interference is necessary in order to upgrading transmission voltage. This paper presents the design factor of a compact tower to meet the environmental interference standard.

SCADA 시스템의 소프트웨어 연구 개발 (Program development For software maintenance of existing SCADA system in KEPCO)

  • 신건학;우희곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.321-324
    • /
    • 1987
  • The development of SCADA system program has been studied for the purpose of upgrading its function and increasing the effect of system application. The results of this project are divided into 3 steps, Analysis of the system function and operating system, Improvement of programs for effective alarm/logging system, Development of programs for the statistical analysis of power system operation.

  • PDF

연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술 (Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells)

  • 배민수;이종연;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

폴리머 절연암을 이용한 송전선로 전압 승압에 관한 연구 (A Study on the Voltage Upgrading of Transmission Lines using Polymer Insulation Arm)

  • 이원교;이정원;강연욱;이동일
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.870-878
    • /
    • 2009
  • The large increase in the use of electricity has resulted in an ever-growing electric power demand. It has created the need for the construction of power transmission facility located close to the load centers and it also has to require wide right-of-way and large lots, that are not always available, for especially the installation of the towers. The difficulties in acquiring right-of-way have put pressure on energy companies to either upgrade a line on an existing right-of-way to higher voltage or build a new line on a narrow right-of-way. This paper presents the design of a compact tower with polymer Insulation arm, in order to reduce the separation between phases. the compact tower can be built on a narrow right-of-way. the compact tower can be designed based on 345 kV Tower regarding electrical clearances and right of way, therefore the conventional 154 kV Tower can be upgrading transmission line voltages have moved to 345 kV levels.