• Title/Summary/Keyword: Power unit

Search Result 3,418, Processing Time 0.03 seconds

Unit Commitment Considering Variable Power of Hydro and Pumped Storage Hydro Units (수력 및 앙수발전기의 가변출력운전을 고려한 기동전지 계획에 관한 연구)

  • 송길영;이범;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.351-362
    • /
    • 1994
  • This paper presents a new method for solving a long term unit commitment problem including hydro and pumped storage hydro units in a large scale power system. The proposed method makes it possible to get variable power of hydro and pumpde storage hydro units and results in the better unit commitment with good convergency. Moreover this paper proposes an unit commitment algorithm to consider variable power of these units effectively by Lagrangian Relaxation method. By applying the proposed method to the test system and the real system, it is verified the usefulness of this method.

A Proposal of a Power Saving Hydraulic Unit and Controller Design (동력 절약형 유압유니트 제안 및 제어기 설계)

  • Yum, Man-Oh;Lee, Sang-Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2010
  • In a conventional system, hydraulic unit pumps out pressurized oil when the power use is not even necessary. As a result, it causes much power loss. This study is on the proposal of new hydraulic unit which controls the revolution of the pump in order to produce proper power needed and to have good response characteristic. In addition, the existing control methods such as PID control method, fuzzy control method, and adaptive control method are applied to the proposed hydraulic unit. Then the best control method is selected and the controller is developed to realize minimum power loss.

A New Method of Fault Detection for Power Converter Unit in Control Rod Control System (원자로 제어봉제어시스템 전력변환부에 대한 새로운 고장 검출 방법)

  • Cheon, Jong-Min;Kim, Choon-Kyoung;Kim, Seog-Ju;Kwon, Soon-Man;Shin, Jong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.556-558
    • /
    • 2004
  • In this paper, we introduce a new method of detecting faults for a power converter unit in Control Rod Control System. The faults of a power converter unit can exert harmful influence upon the operation of Control Rod Drive Mechanisms and the control of the reactor output. This situation makes the quick and correct detection of failures in a power converter unit very important. We devise a new method of fault detection for the digital power controller and improve the drawbacks of the existing fault detector.

  • PDF

The optimal operation condition of heat engine (熱機關의 最適 運轉條件)

  • 정평석;김수연
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.971-974
    • /
    • 1987
  • Considering heat transfer and heat loss processes for the heat engine operating between two fixed heat reservoirs, it may be qualitatively explained that the maxima of power output and its efficiency depending upon operating conditions are extreme maxima. Furthermore, it is also found that from an economic point of view the above two extremes are related to extreme minima of plant cost per unit power output and operation cost per unit power output respectively, and the condition of minimum cost per unit power output exists between the extreme minimum conditions of plant cost per unit power output and that of operation cost per unit power output.

Using Net Power Control for AMOLED TV

  • Arkhipov, Alexander;Lee, Baek-Woon;Park, Kyong-Tae;Sung, Si-Duk;Shin, Sung-Tae;Chung, Kyu-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.47-50
    • /
    • 2007
  • The maximum current level in organic light emitting diodes (OLED) panel influences the maximum pixel luminance, the width of $V_{DD}$ lines, the maximum power consumption and the lifetime. We propose an algorithm that limits the overall current without any palpable image artifacts, and therefore, improve panel parameters by program.

  • PDF

Design and Implementation of High Power Source Measurement Unit (고 전력 Source Measurement Unit의 설계 및 제작)

  • Lee, Sang-Gu;Baek, Wang-Gi;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.860-863
    • /
    • 2003
  • In this paper high power SMU(Source Measurement Unit) having 50V/1.5A source/measure range has been designed and implemented. The SMU has two operation mode, voltage mode and current mode. The SMU can be used as variable voltage source, variable current source, voltage meter, or current meter. Combining two different unit, output power can be doubled as 100V/1.5A. The developed SMU tan be used many semiconductor testing system and electronic device inspecting system.

  • PDF

Holistic Approach to Multi-Unit Site Risk Assessment: Status and Issues

  • Kim, Inn Seock;Jang, Misuk;Kim, Seoung Rae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.286-294
    • /
    • 2017
  • The events at the Fukushima Daiichi Nuclear Power Station in March 2011 point out, among other matters, that concurrent accidents at multiple units of a site can occur in reality. Although site risk has been deterministically considered to some extent in nuclear power plant siting and design, potential occurrence of multi-unit accident sequences at a site was not investigated in sufficient detail thus far in the nuclear power community. Therefore, there is considerable worldwide interest and research effort directed toward multi-unit site risk assessment, especially in the countries with high-density nuclear-power-plant sites such as Korea. As the technique of probabilistic safety assessment (PSA) has been successfully applied to evaluate the risk associated with operation of nuclear power plants in the past several decades, the PSA having primarily focused on single-unit risks is now being extended to the multi-unit PSA. In this paper we first characterize the site risk with explicit consideration of the risk associated with spent fuel pools as well as the reactor risks. The status of multi-unit risk assessment is discussed next, followed by a description of the emerging issues relevant to the multi-unit risk evaluation from a practical standpoint.

A Study on the Operational Events of Domestic Nuclear Power Plants for Multi-unit Risk (원전 다수기 리스크 평가를 위한 국내 원전 사건이력 조사 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.167-174
    • /
    • 2019
  • Compared to a single nuclear power plant (NPP) risk, the commonalities existing in the multiple NPPs attribute the characteristics of the multi-unit risk. If there is no commonality among the multiple NPPs, there will be no dependency among the risks of multiple NPPs. Therefore, understanding the commonality causing multi-unit events is essential to assessing the multi-unit risk, and identifying the characteristics of the multi-unit risk is necessary not only to select the scope and method for the multi-unit risk assessment, but also to analyze the data of the multi-unit events. In order to develop Korea-specific multi-unit risk assessment technology, we analyze the multi-unit commonalities included in the operational experiences of domestic NPPs. We identified 58 cases of multi-unit events through detailed review of domestic nuclear power plant event reports over the past 10 years, and the multi-unit events were classified into six commonalities to identify Korea-specific characteristics of multi-unit events. The identified characteristics can be used to understand and manage domestic multi-unit risks. It can also be used as a basis for modeling multi-unit events for multi-unit risk assessment.

Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response (빠른 응답성을 갖는 가변속 DFIM 분석)

  • Sun, Jinlei;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.