• Title/Summary/Keyword: Power transmission device

Search Result 414, Processing Time 0.025 seconds

Development of a Monitoring Equipment of Current and Potential on Power Transmission Line for 66kV

  • Nisiyama, Eiji;Kuwanami, Kenshi;Kawano, Mitsunori;Matsuda, Toyonori;Oota, I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.41-44
    • /
    • 2003
  • We propose portable equipment that monitors current and voltage of high-potential power transmission lines. In the equipment, a current and voltage sensor are attached to an insulator that supports a power transmission line: A clamped to the power line and the detected current signal is transmitted to the ground station by a wireless optical link using transmission line is detected by a high resistance element, zinc oxide (ZnO). That acts as a potential divider between the power line and ground. We make an experimental device for 66kV power line and demonstrate that it can monitor currents proposed equipment is small-sized, light, and inexpensive in comparison with the conventional CT (current transformer) and PT (potential transformer) since it does not require high potential insulators and magnetic cores, further, the equipment is easily installed owing to its small size and its simple structure.

  • PDF

The Improved Power Supply for APD and Efficiently Designed Cylindric Micro-lens for a Wireless Optical Transmission System (무선 광 전송용 APD 전력 공급기와 원통형 레이저형상 보정용 마이크로 렌즈 기술)

  • KIM, MAN HO
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.654-659
    • /
    • 2005
  • An improved power supply for APD(Avalanche Photo Diode) with a received optical power monitoring circuit allows the received optical power increase temporary without of the degradation of the electrical signal. For the cost reduction and simple fabrication, an improved power supply has been proposed that it was designed for driving a APD as a receiving device of a wireless optical transmission system. It was demonstrated that it was possible to improve a dynamic range by compensating the temperature coefficient of the APD up to 1.0 V/$^{\circ}C$ through the power supply. Also, for an efficient transmission at the receiver end, a simple structure of a single cylindrical micro-lens configuration was used in conjunction with the laser diode to partially compensate a laser beam ellipticity. For this purpose, an astigmatism introduced by the micro-lens is utilized for the additional compensation of the beam ellipticity at the receiver end. In this paper, it is demonstrated that an efficient beam shaping is realized by using the proposed configuration consisting of the single lens attached to the laser diode.

A Data Transmission Mode Change Method for Improving Energy Efficiency in IoT Environments

  • Lee, Sukhoon;Kim, Kwangsu;Jeong, Dongwon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 2020
  • In general, many IoT devices, including smart phones, use LTE, Wi-Fi, and Bluetooth, and these communication modules generate a lot of energy consumption during periodic data transmission. This paper proposes a method of the data transmission mode change for improving energy efficiency in various communication environments that mobile devices may encounter. We propose an algorithm for setting the mode considering energy efficiency, data transmission performance and cost when the mobile device transmits data, and transmitting the data in an optimized manner according to the state of the mobile device. The proposed algorithm is implemented through experiments on energy efficiency for each communication module, and the scenario is used to verify how efficiently the proposed algorithm uses energy.

Coil-Capacitor Circuit Design of a Transcutaneous Energy Transmission System to Deliver Stable Electric Power

  • Choi, Seong-Wook;Lee, Min-Hyong
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.844-849
    • /
    • 2008
  • A new transcutaneous energy transmission (TET) system was developed for transmitting electrical power to an implanted device, such as an artificial heart in a patient's body. This new design can maintain a stable output voltage independent of the load resistance. The system includes a compensation capacitor to reduce energy loss and increase power transfer efficiency. Experimental results show that the output voltage of the receiving coil changes very little as the load resistance varies from 14.8 ${\Omega}$ to 15 $k{\Omega}$, which corresponds to a change in output power from 0.1 to 97 W.

  • PDF

Design of the 1.5kVA Class Wireless Power Transfer Device for Battery Charging of Integrated Power Control System in MSAP (군 이동기지국시스템(MSAP) 통합전원제어장치 배터리 충전용 1.5kVA급 무선전력전송기기의 설계)

  • Kim, Jin-Sung;Kim, Byung-Jun;Park, Hyeon-Jeong;Seo, Min-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • The Tactical Information and Communication Network system provides real-time multimedia services such as voice and data by utilizing the Mobile Subscriber Access Point. At this time, an external transmission path is constructed through the Low Capacity Trunk Radio and the High Capacity Trunk Radio system. The communication devices of each wireless transmission system are mounted on a tactical vehicle and a secondary battery is used to prevent a power interruption when the supply power to the tactical vehicle is transferred to the integrated power control device. In this paper, the basic design of the Wireless Power Transfer device for charging the battery of the integrated power control system of the mobile base station system using the Loading Distribution Method and checking the number of primary windings and the core material selection by the air gap through the Finite Elements Method.

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.

Study on Application of Reinforcement Device to Provide Greater Dynamic Stability for Power Transmission Towers and its Effect

  • Yang, Kyeong-hyeon;Bae, Choon-hee;Jeong, Nam-geun;Kim, Doo-young;Kim, Sung-min;Jang, Yong-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • To verify that the friction damper used to high buildings as a kind of control technology of wind vibration can reduce dynamic behaviors of PTTs effectively, slip dampers in this paper are proposed to absorb the energy through relatively frictional movement of slip dampers applied to main post of a PTT (Power Transmission Tower) when dynamic displacement of a PTT occurs. The result of dynamic analysis is presented to determine the capacity of the damper system by controlling damping ratio on the resonance condition. It is observed that by installing slip dampers at a PTT the strain amplitudes of the main post caused by wind load are effectively reduced. Therefore it is shown that the proposed damper satisfies the strengthened wind-load design standards, and its efficacy was also validated experimentally by field testing.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Active and Reactive Power Control Model of Superconducting Magnetic Energy Storage (SMES) for the Improvement of Power System Stability

  • Ham, Wan-Kyun;Hwang, Sung-Wook;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device. Furthermore, an optimal priority scheme is proposed for the combination of active and reactive power control to be able to stabilize power transient swings.