• Title/Summary/Keyword: Power tiller

Search Result 106, Processing Time 0.026 seconds

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

Study on the Effects of Hammer's Thickness and Width on the Grinding Performance of Hammer Mill (햄머밀의 햄머두께 및 폭(幅)이 분쇄성능(粉碎性能)에 미치는 영향(影響))

  • Kim, Soung Rai;Chang, Dong Il;Kwon, Soon Goo
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1985
  • Since most farmers breeding livestocks in Korea is depended on imported feeds, the rate of self-supplying feeds is very important for a stable development of farmers. Therefore, it is considered necessary to increase the rate of self-supplying feeds. In this study, performance tests were carried out with barley and forage to find the design's parameters of hammer for a small size hammer mill which can be driven by 3.7-7.5 kW power tiller being used by most farmers. The revolution speed of hammer mill was 3000 rpm, widths of hammer were 20mm, 30mm, 40mm, and the levels of thickness of hammer were 2mm, 4mm and 6mm. Experimental materials used were barley and forage and screen openings for barley was 4.76mm, and 3.18mm for forage. The study results can be summarized as follows; 1. Results of grinding tests showed that particle sizes were 478-774 microns for barley and 350-434 microns for forage. They were decreased according to the increasing thickness and width of hammer. 2. Fineness modulus of grinded materials were 3.07-3.62 for barley and 2.69-2.93 for forage. They were inversely proportional to thickness and width of hammer. 3. The required power for grinding was 3.8-5.0 kW for barley and 0.9-1.4 kW for forage. The thickness of hammer was more important for less power requirement than width of hammer. 4. Grinding performance of a small size hammer mill was 99-170kg/kWh for barley and 11-21 kg/kWh for forage. The thickness of hammer was an important factor for grinding performance, and inversely proportional to grinding performance. For about 3.2 of fineness modulus, 4 mm thickness was the best, and an optimum width of hammer was 30mm for a small size hammer mill.

  • PDF

VARIETAL DIFFERENCES IN DISTRIBUTION AND PHYSIOLOGICAL CHARACTERISTICS OF RICEROOT (수도근(水稻根)의 분포(分布) 및 생리적(生理的) 특성(特性)에 관(關)한 품종간차이(品種間差異))

  • Park, H.;Park, Y.S.;Kim, Y.W.;Shin, C.S.;Kim, Y.S.
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 1972
  • Varietal difference in root distribution and other root characteristics were investigated under fold and water culture condition. The results were as follows: 1. IR667 showed funnel type of root distribution in soil profit while Jinheung had barrel type, and each type appearance was more distinguishable with fertilizer application. 2. Root weight per tiller was smaller in IR667 than in Jinheung and IR667 had more root in 0 to 5cm of soil depth but Jinheung had more in 5 to l0cm depth. 3. Horizontal distribution of root was dencer near to stem base without fertilizer than with fertilizer in both IR667 and Jinheung indicating structural construction for intensive nutrient uptake. Between varieties this 'dence to stem base' trend accompaning 'dence to wide spacing side' was greater in IR667 without fertilizer and these were quite true with fertilizer in Jinheung. 4. The decreasing rates of root and ear weight by fertilizer application were greater in IR667 than in Jinheung. This and other characteristics indicated that the root of IR667 is likely to be panicle-number type comparing with Jinheung. 5. The root of IR667 had lower oxidizing power of ${\alpha}-naphthylamine$ than that of Jinheung indicating weaker resistance to reductive soil but cation exchange capacity of water-cultured root was higher in IR667 suggesting stronger nutrient uptake. 6. The content of phosphorus and especially potassium in root were higher with fertilizer but lower without fertilizer in IR667 than in Jinheung indicating that IR667 is more sensitive to root environment. 7. The contents of N, K and CEC were increasing toward root tip while P content was decreasing. The root from surface soil had higher N and K content than that from subsoil. The contents of N,P,K, and CEC of root at harvesting stage were about 1.0%, 0.1%, 0.5% and 15me/100g at dry weight base, respectively.

  • PDF

CO2 Emission Analysis from Horticultural Facilities & Agricultural Machinery for Spread of New and Renewable Energy in Rural-type Green Village (농촌형 녹색마을에 신재생에너지 보급을 위한 시설재배 및 농업기계의 CO2 배출량 분석)

  • Kim, J.G.;Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, H.T.;Seo, K.W.;Lee, S.K.;Cho, H.J.;Kang, J.W.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.86-92
    • /
    • 2011
  • In order to reduce dependence on the fossil fuels and $CO_2$ gas emission in farming activities, the government has pushed ahead with making the self-sufficiency of farming energy up 40% level in green villages. The objectives of this study are to survey the energy consumption of horticultural facilities or agricultural machineries, and to analyze the reduced $CO_2$ gas emission level from fossil fuel to bio-diesel fuel. For the implement of this study, it is necessary to analyze the energy consumption level in the various sector of farming activities, and available renewable energy sources should be selected. Annual total $CO_2$ gas emission in the tillage farming sector was analyzed as $5,667,258\;t-CO_2$ and that in the horticultural facilities occupied $4,932,607\;t-CO_2$, while the $CO_2$ gas emission level of diesel fuel was $3,105,707\;t-CO_2$, and that of the heavy oil showed $1,370,578\;t-CO_2$. The average $CO_2$ gas emission level of horticultural facilities in the country was analyzed as $29,418\;t-CO_2/ha$. Among the total energy consumption of agricultural machineries, tractor used 284,763kL, power tiller spent 221,314 kL, grain drier consumed 145,524kL and combine tractor expend 72,537kL. From the comparison of $CO_2$ gas emission level between fossil fuel and bio-diesel fuel for the horticultural facilities or agricultural machinery in G-City, Jeonbuk Province, the $CO_2$ gas emission level can be reduced by 7% through replacing the fuel from fossil to biodiesel.

Effect of Flywheel Weight on Engine Performance for the Small Diesel Engine (Flywheel의 중량(重量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Jung, Hae Kook;Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.143-152
    • /
    • 1988
  • This study was conducted to obtain basic data which affected engine performance of the power tiller being widely used in the rural area. Among the various factors affected engine performance, only flywheel weight was considered as the major factor in this study. Fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine tested were measured and analyzed on the four levels of flywheel weight (32.2, 29.7, 26.4, 24.2 kg). The results obtained were as follows: 1. The maximum output of 6 and 7.5 kW engine was 7.43 kW and 7.85 kW respectively. When flywheel weight was reduced from 32.2 kg to 24.2 kg, output power of the engine was increased 0.27 kW in 6 kW engine and increased 0.39 kW in 7.5 kW engine. 2. The fuel consumption ratio was decreased from 300.8 to 296.8 g/kW-hr in 6 kW engine and decreased from 313.6 to 312.8 g/kW-hr in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 3. The mechanical efficiencies of the engine was increased from 76.1 to 76.8% in 6 kW engine and increased from 76.7 to 77.0% in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 4. When the flywheel weight was reduced from 32.2 kg to 24.2 kg, a tendency of a little decrease of vibration at X- and Z-axis in 6 kW engine and of a little increase of vibration at Y-axis in 6 kW engine and all directions in 7.5 kW engine was observed. 5. Motoring losses was decreased from 2.33 to l.76 kW in 6 kW engine and decreased from 2.46 to 1.84 kW in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. From the above results and the flywheel weight calculated theoretically, it was recommendable that the flywheel weight should be reduced about 7 kg in 6 kW engine and about 10 kg in 7.5 kW engine, respectively.

  • PDF

Effect of Flywheel Weight on the Vibration of Diesel Engine (플라이휠 중량(重量)이 디젤 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Sung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.167-180
    • /
    • 1993
  • Most of small size diesel engines are widely used with the same size and weight flywheel in the levels of 6.0kW and 7.5kW. This study was conducted to obtain basic data which affect the engine performance of the power tiller. The flywheel weight was considered as a major factor in this research. Basically, fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine were measured and analyzed on four levels of flywheel weight, 32.2, 29.4, 26.2 and $24.2kg_f$, respectively. Results were obtained as follows: 1. The weights of flywheel were $23.7kg_f$ from design program of JSME and $24.5kg_f$ from ASME and SAE design criteria. Therefore, the flywheel weight of $32.2kg_f$ might be reduced about $8kg_f$ in 7.5kW engine. 2. The rated outputs of 6.0kW and 7.5kW engine were actually 7.43kW and 7.85kW, respectively. When flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, outputs were increased from 7.43kW to 7.70kW in 6.0kW engine and from 7.85kW to 8.25kW in 7.5kW engine. 3. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, fuel consumption ratio was decreased from 300.8 to 296.8g/kW-hr in 6.0kW engine and also from 313.6 to 312.8g/kW-hr in 7.5 kW engine, respectively. 4. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, mechanical efficiency of engine was increased from 76.1% to 76.8% in 6.0kW engine and also from 76.7% to 77.0% in 7.5kW engine, respectively. 5. When the flywheel weight was reduced from $32.2kg_f$ to $24.2kg_f$, vibration was decreased at X-axis and Z-axis in 6.0kW engine, however, slightly increased at Y-axis in 6.0kW engine and at all axes in 7.5kW engine. 6. When the flywheel weight was reduced from $32.2kg_f$ to $24.4kg_f$ motoring loss was decreased from 2.33kW to 1.75kW in 6.0kW engine and also from 2.46kW to 1.84kW in 7.5kW engine.

  • PDF