• 제목/요약/키워드: Power system load modeling

검색결과 300건 처리시간 0.029초

저궤도 위성의 정 전압 변압기 일반화 모델링 및 적용 (Generalization modeling and verify for low-orbit satellite regulation converter)

  • 윤석택
    • 한국위성정보통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.136-140
    • /
    • 2011
  • 위성은 효용성 증가로 지속적인 발전를 거치며 여러 종류의 위성이 개발 및 계획이 진행되고 있으며, 여러 가지 필수적인 시스템을 포함하고 있다. 이중 전력 공급 시스템은 위성의 수명에 직접적인 영향을 가지고 있으며, 다양한 요구에 맞게 설계가 이루어 져야 하는 특성을 지니고 있다. 따라서 위성의 설계 요구조건에 부합하는 전압 변압기의 설계 및 안정한 제어가 요구된다. 일반적으로 저궤도 위성의 전력 변환은 각 모듈 및 부하에 따라 여러 단계를 거쳐 전달하게 된다. 이러한 다양한 단계의 전력 변환에 대한 분석 및 이를 반영한 설계는 복잡성으로 인해 쉽게 파악하기 힘든 특성을 가지게 된다. 본 논문에서는 간결 화된 일반화 모델링을 통한 대신호, 소신호분석으로 정 전압 변압기 설계 및 안정화 제어를 위한 방안을 제시한다.

PSO 알고리즘을 이용한 동적부하모델링 (Dynamic Load Modeling Using a PSO algorithm)

  • 김영곤;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.93_94
    • /
    • 2009
  • Load modeling has a significant impact on power system analysis and control. Estimating model parameters can be considered as important as stability analysis itself for accurate analysis and control. This paper presents a method for estimating parameters for load models, which include static and dynamic parts, based on particle swarm optimization. The method effectively searches a suitable set of parameters minimizing the fitness function. This paper applies the method to simulation data obtained from 8-bus test system including induction motors.

  • PDF

Python을 이용한 전압보상설비의 상호 협조제어 모델링 및 시뮬레이션 (Coordinated Control Modeling and Simulation among the Voltage Compensation Equipments Using Python)

  • 이상덕;백영식;서규석
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.1-8
    • /
    • 2010
  • The ultrafashionable machinery that require high quality electricity power has been daily come into being. Because domestic power system has been larger and more complicated in accordance with raising power demand by power market requirement. Because of these power market situations, The FACTS (Flexible AC Transmission System) which is power transmission system for the next generation to meet flexible supply the power and reliability has been applied. If they, compensators and FACTS, are used inter-efficiently in range that does not affect the stability and a badly influence the security, they might be increase in the voltage stability of system, supply reliability and also achieve the voltage control in a suddenly changed power system. Therefore we describe and suggest on this treatise that a plan for coordination control between UPFC, Shunt elements (Sh. Capacitors & Sh. Reactors) among compensators and also describe the method to keep or control the voltage of power system in allowable ranges. The method follows that, we used characteristics of each equipment, UPFC would be also settled to keep the identified voltage range in change of load bus, Shunt elements also would be settled to supply the reactive power shortage in out of operating range of UPFC to cope actively with change of the power system. As the result of simulation, it is possible to keep the load bus voltage in limited range in spite of broad load range condition. This helps greatly for the improvements of supply reliability and voltage stability.

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

차량 부하 스펙트럼 모델링을 이용한 구동축의 가속 수명 평가 (Accelerated Life Evaluation of Drive Shaft Using Vehicle Load Spectrum Modeling)

  • 김도식;이근호;강이석
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.115-126
    • /
    • 2017
  • 본 논문은 특수 차량용 동력 전달계 부품인 구동축의 가속 수명 시험을 수행하는 것이다. 동력 전달계 부품의 수명 평가를 위하여 사용환경의 주행 부하 스펙트럼의 데이터가 필요하나, 특수 차량의 경우 부하 스펙트럼을 구할 수 없는 경우가 대부분이다. 따라서, 본 논문에서는 차량 데이터와 특수 주행로 조건에 기반하여 주행 부하 로드 스펙트럼을 모델링하고 시뮬레이션 하였다. 가속 수명 시험에는 역승 모델을 적용하였고, 마이너 법칙을 사용하여 등가 토크를 구하였으며, 구동축 가속 수명 시험을 위하여 교정 가속법을 사용하였다. 피로시험은 세 수준의 스트레스로 수행하였으며, 사용자 스트레스 수준의 수명은 외삽법을 사용하여 예측 하였고, 실제 시험 결과와 부하 스펙트럼 데이터와의 비교로 수명을 검증하였다.

무전극등 시스템의 모델 및 시뮬레이션 연구 (Modeling and Simulation of an Electrodeless lamp system)

  • 한수빈;박석인;정봉만;정학근;김규덕;유승원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.237-239
    • /
    • 2003
  • Characteristics of electrodeless lamp as a load of the ballast is different compared to normal fluorescent lamp because the lamp includes the magnetics for inductive discharging process. So somewhat different modeling is necessary to make a proper power match between the lamp and ballast. Modeling of an electrodeless lamps, Endura of Osram, is presented in this paper. Simulation with a result of experiment is given for a verification of proposed model.

  • PDF

Passive Transient Voltage Suppression Devices for 42-Volt Automotive Electrical Systems

  • Shen, Z.John
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.171-180
    • /
    • 2002
  • New 42-volt automotive electrical systems can provide significant improvements in vehicle performance and fuel economy. It is crucial to provide protection against load dump and other overvoltage transients in 42-volt systems. While advanced active control techniques are generally considered capable of providing such protection, the use of passive transient voltage suppression (TVS) devices as a secondary or supplementary protection means can significantly improve design flexibility and reduce system costs. This paper examines the needs and options for passive TVS devices for 42-volt applications. The limitations of the commonly available automotive TVS devices, such as Zener diodes and metal oxide varistors (MOV), are analyzed and reviewed. A new TVS device concept, based on power MOSFET and thin-film polycrystalline silicon back-to-back diode technology, is proposed to provide a better control on the clamp voltage and meet the new 42-volt specification. Both experimental and modeling results are presented. Issues related to the temperature dependence and energy absorbing capability of the new TVS device are discussed in detail. It is concluded that the proposed TVS device provides a cost-effective solution for load dump protection in 42-volt systems.

교류전기철도 급전시스템의 전차선 전압해석 (Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System)

  • 이승혁;정현수;김진오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.490-496
    • /
    • 2002
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode far locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Finally, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

  • PDF

단권변압기 교류전기철도 급전시스템의 전차선 전압해석 (Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System)

  • 정현수;이승혁;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권9호
    • /
    • pp.493-499
    • /
    • 2003
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode for locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Filially, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

Control and Operation of Hybrid Microsource System Using Advanced Fuzzy- Robust Controller

  • Hong, Won-Pyo;Ko, Hee-Sang
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.29-40
    • /
    • 2009
  • This paper proposes a modeling and controller design approach for a hybrid wind power generation system that considers a fixed wind-turbine and a dump load. Since operating conditions are kept changing, it is challenge to design a control for reliable operation of the overall system To consider variable operating conditions, Takagi-Sugeno (TS) fuzzy model is taken into account to represent time-varying system by expressing the local dynamics of a nonlinear system through sub-systems, partitioned by linguistic rules. Also, each fuzzy model has uncertainty. Thus, in this paper, a modem nonlinear control design technique, the sliding mode nonlinear control design, is utilized for robust control mechanism In the simulation study, the proposed controller is compared with a proportional-integral (PI) controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-hybrid power generation system.