• Title/Summary/Keyword: Power system frequency

Search Result 4,571, Processing Time 0.037 seconds

Demonstration to Operate and Control Frequency Regulation of Power System by 4MW Energy Storage System (4MW 에너지저장장치의 전력계통 주파수 조정 운전제어를 위한 실증)

  • Lim, Geon-Pyo;Han, Hyun-Gyu;Chang, Byung-Hoon;Yang, Seung-Kwon;Yoon, Yong-Beum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • Operation and control system has been installed and tested to use energy storage system(ESS) for frequency regulation at 4MW class of ESS demonstration facility installed at Jeju island, Korea in 2013. Simulation tests were performed by programing language C# for power system of Jeju island to develop control algorithm. Site simulation tests were performed in control system itself without connecting power system and energy storage system. Control algorithm was coded, modified and tested to load to controller and communication system and human-machine interface were developed and tested in the process of simulation tests. After similar results to that of simulation tests by programing language were obtained, power system and energy storage system demonstration facility were connected to control system by communication system. Energy storage system for frequency regulation was tested for actual frequency and simulation frequency. The site tests showed the similar results to that of simulation tests and the control systems is possible to be operated for frequency regulation. Faster response of energy storage system for frequency regulation, less costs and less capacity of energy storage systems which cover for frequency regulation of power plants. It is expected that more studies for time-reduction and time-delay elements can make less capacity of energy storage system cover more role of frequency regulation of power plants.

On Power System Frequency Control in Emergency Conditions

  • Bevrani, H.;Ledwich, G.;Ford, J. J.;Dong, Z.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.499-508
    • /
    • 2008
  • Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An $H_{\infty}$ control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.

Measurement and Simulation of Wide-area Frequency in US Eastern Interconnected Power System

  • Kook, Kyung Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.472-477
    • /
    • 2013
  • An internet-based, real-time GPS synchronized wide-area power system frequency monitoring network(FNET) has been monitoring wide-area power system frequency in continuous time in the United States. This paper analyzes the FNET measurement to the verified disturbances in the US eastern interconnected power system and simulates it using the dynamic system model. By comparing the frequency measurements with its simulation results to the same disturbances in detail, this paper finds that the sequence of monitoring points to detect the frequency fluctuation caused by the disturbances is matched well in the measured data and the simulation results. The similarity comparison index is also proposed to quantify the similarity of the compared cases. The dynamic model based simulation result is expected to compensate for the lack of FNET measurement in its applications.

Development of the Control System for Fast-Responding Frequency Regulation in Power Systems using Large-Scale Energy Storage Systems

  • Lim, Geon-Pyo;Park, Chan-Wook;Labios, Remund;Yoon, Yong-Beom
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Energy storage systems (ESS) can be used to provide frequency regulation services in a power system to replace traditional frequency regulation power plants. Battery ESS, in particular, can provide "fast-responding frequency regulation," wherein the facility can respond immediately and accurately to the frequency regulation signal sent by the system operator. This paper presents the development and the trial run results of a frequency regulation control system that uses large-scale ESS for use in a large power system. The control system was developed initially for the 4 MW ESS demonstration facility in Jocheon Jeju Island, and was further developed for use in the 28 MW ESS facility at the Seo-Anseong substation and the 24 MW ESS facility at the Shin-Yongin substation to provide frequency regulation services within mainland Korea. The ESS facility in Seo-Anseong substation responds to a sudden drop in frequency via governor-free control, while the ESS facility in Shin-Yongin responds via automatic generator control (AGC).

Wide-area Frequency-based Tripped Generator Locating Method for Interconnected Power Systems

  • Kook, Kyung-Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.776-785
    • /
    • 2011
  • Since the Internet-based real-time Global Positioning System(GPS) synchronized widearea power system frequency monitoring network (FNET) was proposed in 2001, it has been monitoring the power system frequency in interconnected United States power systems and numerous interesting behaviors have been observed, including frequency excursion propagation. We address the consistency of a frequency excursion detection order of frequency disturbance recorders in FNET in relation to the same generation trip, as well as the ability to recreate by power systems dynamic simulation. We also propose a new method, as an application of FNET measurement, to locate a tripped generator using power systems dynamic simulation and wide-area frequency measurement. The simulation database of all the possible trips of generators in the interconnected power systems is created using the off-line power systems dynamic simulation. When FNET detects a sudden drop in the monitoring frequency, which is most likely due to a generation trip in power systems, the proposed algorithm locates a tripped generator by finding the best matching case of the measured frequency excursion in the simulation database in terms of the frequency drop detection order and the time of monitoring points.

Study of 60Hz Transformer-less High Frequency Linked Grid-Connected Power Conditioners for Photovoltaic Power System (60Hz 절연변압기가 없는 고주파링크방식 계통연계형 태양광발전시스템 고찰)

  • 유권종;정영석;최주엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.563-569
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency DC-DC converter, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter, and an AC filter. The 20kHz switched high frequency converter is used to generate bipolar PWM pulse, and the high frequency transformer transforms its voltage twice, which is subsequently rectified by diode bridge rectifiers for a full-wave rectified 60 Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than other power conditioning systems due to elimination of 60Hz transformer.

A Study on Frequency Control and Active Power Control of Wind Turbine Generation System for PMSG (PMSG 풍력발전 시스템의 출력 제어 및 주파수 제어 연구)

  • Lee, Kwang-Soo;Kim, Mun-Kyeom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.597-607
    • /
    • 2014
  • This paper proposes active power control and frequency support control schemes of wind turbine generation system by using modified Maximum Power Point Tracking(MPPT) of Permanent Magnet Synchronous Generator(PMSG). Most wind turbine generation system is completely decoupled from the power system and power output control with pitch control. According to the frequency deviation, however, MPPT control can not contribute to the frequency change of the power system due to its active power output control. For solving this, the de-loaded(DL) control scheme is constructed for the frequency support control, which is based on applying the active power output control in the rotor speed control of PMSG. The rotor speed by used in the proposed DL control scheme is increased more than the optimal rotor speed of MPPT, and then this speed improvement increases the saved kinetic energy(KE). In order to show the effectiveness of the proposed control scheme, the case studies have been performed using the PSCAD/EMTDC. The results show that the proposed active power output control scheme(DL control and KE discharge control) works properly and the frequency response ability of the power system can be also improved with the frequency support of wind farm.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

The Study on 4MW Energy Storage System for Frequency Regulation (주파수 조정을 위한 4MW 전력 저장 시스템 연구)

  • Koh, Kwang-Soo;Lee, Chung-Woo;Kang, Byung-Kwan;Oh, Seung-Hun;Lee, Yun-Jae;Choi, Eun-Sik;Ryu, Kang-Yeul;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.125-126
    • /
    • 2013
  • ESS(Energy Storage System) for Improve the quality of the power grid, supply reliability, system stability and the efficient operation method of power is drawing attention. According to changes in the load of the power system frequency will be adjustable in real time in response to changes in the frequency of the grid, so thermal power output is mainly controlled in order to keep the grid frequency stable. ESS for adjusting the frequency of the grid when the frequency rises to grid and charge the energy storage device. If the frequency drops to discharge the battery power to the grid and the future is expected to replace the thermal power plant. This paper describes 4MW ESS for the frequency regulation and find out about the characteristics through the PSCAD/EMTDC.

  • PDF

Effect Analysis for Frequency Recovery of 524 MW Energy Storage System for Frequency Regulation by Simulator

  • Lim, Geon-Pyo;Choi, Yo-Han;Park, Chan-Wook;Kim, Soo-Yeol;Chang, Byung-Hoon;Labios, Remund
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.227-232
    • /
    • 2016
  • To test the effectiveness of using an energy storage system for frequency regulation, the Energy New Business Laboratory at KEPCO Research Institute installed a 4 MW energy storage system (ESS) demonstration facility at the Jocheon Substation on Jeju Island. And after the successful completion of demonstration operations, a total of 52 MW ESS for frequency regulation was installed in Seo-Anseong (28 MW, governor-free control) and in Shin-Yongin (24 MW, automatic generation control). The control system used in these two sites was based on the control system developed for the 4 MW ESS demonstration facility. KEPCO recently finished the construction of 184 MW ESS for frequency regulation in 8 locations, (e.g. Shin-Gimjae substation, Shin-Gaeryong substation, etc.) and they are currently being tested for automatic operation. KEPCO plans to construct additional ESS facilities (up to a total of about 500 MW for frequency regulation by 2017), thus, various operational tests would first have to be conducted. The high-speed characteristic of ESS can negatively impact the power system in case the 500 MW ESS is not properly operated. At this stage we need to verify how effectively the 500 MW ESS can regulate frequency. In this paper, the effect of using ESS for frequency regulation on the power system of Korea was studied. Simulations were conducted to determine the effect of using a 524 MW ESS for frequency regulation. Models of the power grid and the ESS were developed to verify the performance of the operation system and its control system. When a high capacity power plant is tripped, a 24 MW ESS supplies power automatically and 4 units of 125MW ESS supply power manually. This study only focuses on transient state analysis. It was verified that 500 MW ESS can regulate system frequency faster and more effectively than conventional power plants. Also, it was verified that time-delayed high speed operations of multiple ESS facilities do not negatively impact power system operations. It is recommended that further testing be conducted for a fleet of multiple ESSs with different capacities distributed over multiple substations (e.g. 16, 24, 28, and 48 MW ESS distributed across 20 substations) because each ESS measures frequency individually. The operation of one ESS facility will differ from the other ESSs within the fleet, and may negatively impact the performance of the others. The following are also recommended: (a) studies wherein all ESSs should be operated in automatic mode; (b) studies on the improvement of individual ESS control; and (c) studies on the reapportionment of all ESS energies within the fleet.