• Title/Summary/Keyword: Power system analysis

Search Result 9,428, Processing Time 0.036 seconds

Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics (다물체동역학을 이용한 다자유도 파력발전시스템의 흡수 효율 분석)

  • Kim, Min Soo;Sohn, Jeong Hyun;Kim, Jung Hee;Sung, Yong Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.557-563
    • /
    • 2016
  • The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.

A Novel Anti-Islanding Method for Utility Interconnection of Distributed Power Generation Systems

  • In-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.217-224
    • /
    • 2004
  • A novel anti-islanding method for the distributed power generation system (DPGS) is proposed in this paper. Three different islanding scenarios are explored and presented based on the analysis of real and reactive power mismatch. It is shown via investigation that islanding voltage is a function of real power alone, where its frequency is a function of both real and reactive power. Following this analysis, a robust anti-islanding algorithm is developed. The proposed algorithm continuously perturbs ($\pm$5%) the reactive power supplied by the DPGS while simultaneously monitoring the utility voltage and frequency. In the event of islanding, a measurable frequency deviation takes place, upon which the real power of the DPGS is further reduced to 80%. A drop in voltage positively confirms islanding and the DPGS is then safely disconnected. This method of control is shown to be robust: it is able to detect islanding under resonant loads and is also fast acting (operable in one cycle). Possible islanding conditions are simulated and verified through analysis. Experimental results on a 0.5kW fuel cell system connected to a utility grid are discussed.

UsN based Soundness Monitoring Diagnosis System of Power Transmission Steel Tower (UsN 기반의 송전철탑 건전성 감시진단시스템 기본설계)

  • Lee, Dong-Cheol;Bae, Ul-Lok;Kim, Woo-Jung;Min, Bung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • In this paper, design method for power tower hazard diagnosis/predition system based on UsN was proposed. The proposed method used multi-hybrid sensors to measure rotation, displacement, and inclination state of power tower, and made decision/prediction of hazard of power tower. System design was made with requirement analysis of monitoring for transmission power facility and use of MEMS and optic fiber sensors. For hazard decision, analysis of correlation was made using sensor output. LN based on IEC61850,international standard for digital substation, was also proposed. For transmission facility monitoring, digital substation and power tower were considered as parts of power facility networks.

The Basic of Comparative Analysis on Characteristic of MW Photovoltaic Power System on Wide Area (광역별 MW급 태양광발전시스템의 발전량 특성 비교분석 기초(I))

  • Park, Seok-Gi;Kim, Dong-Gyun;Choy, Ick;Choi, Ju-Yeop;Yu, Gwon-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.475-476
    • /
    • 2016
  • According to government supporting a renewable generation, a number of industrial MW photovoltaic systems have already been installed and rapidly increased. Even though the supporting is increased, analysis on power valuation and roll of a photovoltaic system are insufficient. In this paper, comparative analysis on characteristic of photovoltaic power system are illustrated as basic of power valuation by collecting power and irradiation data from MW photovoltaic system on wide area.

  • PDF

Development of EMTDC model component for HTS power cable considering critical current, critical temperature and recovery time (임계전류, 임계온도 및 회복시간을 고려한 초전도 전력케이블의 EMTDC 모델 컴포넌트 개발)

  • Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Yoon, Jae-Young;Park, Min-Won;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Before applying HTS power cable to the real utility. system analysis should be carried out by some simulation tools . Hereby the electrical power system analysis is very important for practical use of HTS devices. Nowadays PSCAD/EMTDC simulation tool is one of the most popular and useful analysis tool for the electrical power system analysis. Unfortunately the model component for HTS power cable is not provided in the PSCAD/EMTDC simulation tool In this paper. the EMTDC model component for HTS power cable has been developed considering critical current, critical temperature and recovery time constant that depend on the sorts of HTS wire. The numerical model of HTS Power cable in PSCAD/EMTDC was designed by using the real experimented data obtained from the real HTS 1G wire test. The utility application analysis of HTS power cable was also performed using the developed model component and the parameters of the real utility network in this study. The author's got good results. The developed model component for HTS power cable could be variously used when the power system includes HTS power cable, especially it will be readily analyzed by PSCAD/EMTDC in order to obtain the data for the level of fault current power flow, and power losses, and so on.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

A Study on the Optimal Operation of 2010 Summer Peak in Korea Power System (2010년 여름철 전력계통 최적 운영에 관한 연구)

  • Lee, Sung-Moo;Cho, Jong-Man;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1733-1740
    • /
    • 2010
  • KPX(Korea Power Exchange) predicts that summer peak load will be 70,700MW and system overload will be 150% from contingency analysis. This paper presents a method to operate power system at 2010 summer peak. about equipment variation, power system variation, analysis results of voltage stability, and the method to relief overload by comparing 2009 and 2010. Especially, transmission constraints to prevent global contingency in Korea power system and the role of SPS(Special Protection System) to prevent voltage collapse when fault occurs are introduced.

A Study on the Analysis of Power System Stability using MGPSS (MGPSS를 이용한 전력계통안정도 해석)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.14-17
    • /
    • 2015
  • This paper presents a analysis method for power system stability using a Modified Genetic-based Power System Stabilizer(MGPSS). The proposed MGPSS parameters are optimized using Modified Genetic Algorithm(MGA) in order to maintain optimal operation of generator under the various operating conditions. To improve the convergence characteristics, real variable string is adopted. The results tested on a single machine infinite bus system verify that the proposed controller has better power system stability than conventional controller.

A Study on The Design of Network and Database Structure of The Integrated System for Power System Operational Planning and Analysis (전력수급계획 및 운용해석 종합시스템을 위한 네트워크 및 데이터베이스구조 설계에 관한 연구)

  • Ahn, Yang-Keun;Park, Si-Woo;Nam, Jae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1009-1011
    • /
    • 1998
  • This paper presents a design of network and database structure of the integrated system for power system operational planning and analysis that will be more economical and stable of power system operation. An alias of this system is Highly Integrated Total Energy System(HITES). The Client/server model of HITES is designed as a remote data management model. The input/output-type of application programs and Oracle server is standardized. The separated user-databases from main-database strengthen security of HITES. It is plan to do that tables and relationships are defined by database designs. The connection of application program and DBMS of HITES will be tested through database design and data construction.

  • PDF

Program development For software maintenance of existing SCADA system in KEPCO (SCADA 시스템의 소프트웨어 연구 개발)

  • Shin, Keon-Hak;Woo, Hee-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.321-324
    • /
    • 1987
  • The development of SCADA system program has been studied for the purpose of upgrading its function and increasing the effect of system application. The results of this project are divided into 3 steps, Analysis of the system function and operating system, Improvement of programs for effective alarm/logging system, Development of programs for the statistical analysis of power system operation.

  • PDF