• Title/Summary/Keyword: Power system Harmonics

Search Result 742, Processing Time 0.023 seconds

Characteristics Analysis for Voltage, Current & Capacity of Condenser at Voltage Unbalance (전압 불평형시 콘덴서 전압, 전류, 용량 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.145-151
    • /
    • 2010
  • Voltage unbalance is regarded as a power quality problem of significant at the user application. Although the voltages are quite well balanced at the transmission system, the voltage level of utilization can be unbalanced due to the unequal system impedances and the unequal distribution of single phase loads. Capacitor is generally used for power-factor compensation and reducing harmonics of non linear load with reactor. If voltage unbalance exists, current unbalance is generated and it will be reflected in the capacity variance. When the reactor and condenser are used at the same location, generally its trouble rate is high. And it is very important checking out that how the variance of voltage, current and capacity of condenser is proceeded by the voltage unbalance. In this paper, we calculated that voltage, current and capacity of condenser are within the tolerance limit of official regulations in the event of voltage unbalance with/without reactor.

Calculation of the Harmonic Emission Limit for low-Voltage Electrical Equipment (국내 저압 전기기기의 고조파 유출 제한값 산정)

  • Kang, Moon-Ho;Song, Yang-Hoi;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.56-61
    • /
    • 2008
  • Because the harmonic disturbance characteristic which makes voltage drop and the deterioration of instantaneous power quality in electrical power system overheats the NGR and the customer capacitor and malfunctions the OCGR and AMR, it is necessary for electric power company to take active measures to reduce this disturbance. International Electrotechnical Commission(IEC) 61000-3-2 specifies limits for harmonic current emissions generated by low voltage(LV) electrical equipment whose input current $\leq$ 16(A) per phase. Analysis shows that limits for Class A equipment in IEC are calculated using the reference impedance of LV system and maximum permissible voltage and limits for other Classes are also calculated based on limits for Class A. Therefore we have calculated four(4) internal limits for LV electrical equipment using the korea reference impedance and maximum permissible voltage in this paper.

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2310-2316
    • /
    • 2011
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110 (kW) class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnets design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

  • PDF

Comparison on the Airgap Flux Density of High-Speed Slotless Machines with Radial Magnetization and Halbach Array PM Rotor (반경방향 착자형과 Halbach 배열형 영구자석 회전자를 갖는 고속 슬롯리스 기기의 공극자속밀도 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Ryu, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.315-322
    • /
    • 2001
  • High speed brushless permanent magnet(PM) machines need a key technology to minimize the iron core losses in stator and the eddy current losses in the retained sleeve and magnets caused by slotting harmonics. Thus, slotless or iron-coreless brushless PM machines have been applied for a very high rotational speed and/or the ripple-free torque. Unfortunately, slotless or coreless PM machines have lower open-circuit field than slotted and/or iron-cored types, which cause to reduce power density. Fortunately, Halbach array can generate the strong magnetic field systems without additional magnetic materials. In this paper, the 4-pole Halbach array is applied to the high speed machine and is compared with the radial magnetized PM array in field system. The iron-/air-cored stator of PM machine is constructed with/without winding slots. Open circuit magnetic fields of each type are presented from the analytical method and finite element method. Consequently, it is confirmed that the Halbach array field system with slotless stator is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

Amplification of Current Harmonics Due to Self-Excitation Capacitors for Wind Induction Generators (자여자 풍력 유도발전기의 캐패시터에 따른 고조파 전류의 증폭)

  • Oh, Yong;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.192-197
    • /
    • 2008
  • The value of this paper is to use reduced size apparatuses to perform field measurement in order to identify and validate that the harmonic-current effects are due to the presence of self-excitation capacitance connected at stator's terminals of the studied SEIG. This paper has presented the measured electrical quantities of a three-phase $\Delta$-connected wind induction generator (WIG) under sudden connection and disconnection of resistive loads. An intelligent power-system recorder/monitor has been employed to measure three-phase voltages and currents of the studied system at the terminals of the studied WIG and the load. The measured electrical quantities have been analyzed. Total harmonic distortion (THD) of current using cumulative probability density function has been employed to determine the penetration of harmonic distortion at load side. The results show that the harmonic currents generated by the studied WIG can be severely amplified by the connected self-excited capacitance at the stator's terminals.

Optimal Control Design-based Gain Selection of an LCL-filtered Grid-connected Inverter in State-Space under Distorted Grid Environment

  • Tran, Vi-Thuy;Yoon, Seung-Jin;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.344-345
    • /
    • 2018
  • In order to alleviate the negative impacts of harmonically distorted grid condition on grid-connect inverters, an optimal control design-based gain selection scheme of an LCL-filtered grid-connected inverter and its ability to compensate selective harmonics are presented in this paper. By incorporating resonant terms into the control structure in the state-space to provide infinity gain at selected frequencies, the proposed control offers an excellent steady-state response even under distorted grid voltage. The proposed control scheme is achieved by using a state feedback controller for stabilization purpose and by augmenting the resonant terms as well as intergral term into a control structure for reference tracking and harmonic compensation. Furthermore, the optimal linear quadratic control approach is adopted for choosing an optimal feedback gain to ensure an asymptotic stability of the whole system. A discrete-time full state observer is also introduced into the proposed control scheme for the purpose of reducing a total number of sensors used in the inverter system. The simulation results are given to prove the effectiveness and validity of the proposed control scheme.

  • PDF

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

Frequency Analysis and Reduction of Electronic Noise in ESS (ESS의 전자 잡음 주파수 분석 및 제거)

  • Ahn, Bong Man;Han, Byoung Sung;Han, Un Ki;Lee, Young Kwan;An, Hyun Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.568-575
    • /
    • 2022
  • This paper is a study on frequency analysis and electronic noise reduction of energy storage system (ESS). We acquired 4 necessary data for about 2 minutes and 4 seconds using a sampling frequency of 10,000 Hz in ESS. Fast Fourier transform (FFT) was used for electronic noise analysis from the acquired data. As a result, it was confirmed that DC component, fundamental wave, second and higher harmonic component exist. For the attenuation of harmonics, low-pass filter (LPF) was applied. We confirmed that an attenuation of approximately 59.3% appears from the second harmonic. The presence of many harmonic components in the data of the ESS was expected to occur due to the insufficiency of optimization among the modules inside the ESS. Therefore, we propose that a national certification system for ESS should be introduced to settle down the issue properly.

Design and Fabrication of the SHP Mixer for the 5 GHz Band Wireless Communication System (5 GHz 대역 무선통신용 SHP 혼합기 설계 및 제작)

  • Kim Kab-Ki;Ahn Young-Sup
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.875-879
    • /
    • 2004
  • In this paper, sub-harmonic pumped(SHP) mixer using anti-parallel diode pair(APDP) is designed for 5 GHz band wireless communication system. Conventional mixers mix LO with RF, and obtain IF signal from the difference between LO and RF. As the frequency increase, LO signal requires higher LO power, better phase noise characteristics, more stable La. However, using APDP, the SHP mixer mixes the 2nd harmonics of LO signal. Therefore, the SHP mixer has an advantage that the LO signal frequency required for IF signal is reduced at half value of LO fundamental frequency. When LO power is 3 dBm, the conversion loss of manufactured SHP mixer is 12.83 dB. The isolation of LO/IF, 2LO/IF, RF/1F and LO/RF is 39.17 dB, 58 dB, 34 dB, and 67.9 dB. respectively. For this case, IP3 at input is 8 dBm.

Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP (DSP를 이용한 인공지능형 전력품질 진단기법 연구)

  • Chung, Gyo-Gbum;Kwack, Sun-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2009
  • This paper proposes a new Artificial-Intelligent(AI) Power Quality(PQ) diagnosis algorithm using Discrete Wavelet Transform(DWT), Fast Fourier Transform(FFT), Root-Mean-Square(RMS) value. The developed algorithm is able to detect and classify the PQ problems such as the transient, the voltage sag, the voltage swell, the voltage interruption and the total harmonics distortion. The 15.36[kHz] sampling frequency is used to measure the voltages in a power system. The measured signals are used for DWT, FFT, RMS calculation. For AI diagnosis of the PQ problems, a simple multi-layered Artificial Neural Network(ANN) with the back-propagation algorithm is adopted, programmed in C++ and tested in PSIM simulation studies. Finally, the algorithm, which is installed in MP PQ+256 with TI DSP320C6713, is proved to diagnose the PQ problems efficiently.