• 제목/요약/키워드: Power stability

검색결과 3,550건 처리시간 0.041초

대단위 풍력발전단지의 과도 안정도 특성에 관한 연구 (Effect of a large-scale wind farm on power system transient stability)

  • 윤동희;오세승;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.226-227
    • /
    • 2006
  • Wind power is one of the fastest growing distributed generation types. As part of a worldwide trend, the concerns of large wind generation have been risen rather than small wind generation since it influences the whole power system Including the transient stability. The objective of this paper is to understand the effect of a large-scale wind generation on power system transient stability and to develop a systematic procedure to assess the effect according to the location and capacity of a wind farm. In the proposed procedure, an index is presented to evaluate the appropriateness of the location and capacity of a wind farm for transient stability contingencies.

  • PDF

전압 및 과도안정도를 고려한 최적조류계산 알고리즘 개발에 관한 연구 (A Study on Development of Optimal Power Flow Calculation Algorithm Considering Voltage and Transient Stability)

  • 김용하;이범;최상규;조성린;정현성;오석현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.39-42
    • /
    • 2005
  • This paper presents a optimal power flow calculation algorithm considering voltage and transient stability In this method, voltage stability margin and transient stability constraints is incorporated into a optimal power flow calculation formulation to guarantee adequate voltage and transient security levels in power system. The proposed method is applied to IEEE-24 Reliability Test System and the results shows the effectiveness of the method.

  • PDF

석유화학공장의 전력계통 안정도 해석;맥시코 카데래이타 경우 (POWER SYSTEM STABILITY ANALYSIS ON PETROCHEMICAL PLANT;MEXICO CADEREYTA CASE)

  • 김봉희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1224-1226
    • /
    • 1999
  • When electrical engineers get started with the design of main electrical system of a complex petrochemical plant along with chemical and mechanical engineers, they are usually confronted with lack of power system data. This paper presents a procedure how to perform power system stability analysis for the purpose of design studies within the limited system data given and to verify the given data to get reliable convergence in dynamic simulation as well as to apply the stability analysis result on practical system design. The power system stability analysis on the Cadereyta petrochemical plant in Mexico is provided as a study case.

  • PDF

과도안정도 해석을 위한 지능형 부하모델의 새로운 접근법 (Nobel Approaches of Intelligent Load Model for Transient Stability Analysis)

  • 이종필;임재윤;지평식
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.96-101
    • /
    • 2008
  • The field of load modeling has attracted the attention since it plays an important role for improving the accuracy of stability analysis and power flow estimation. Also, load modeling is an essential factor in the simulation and evaluation of power system performance. However, conventional load modeling techniques have some limitations with respect to accuracy for nonlinear and composite loads. Thus, precision load modeling technique and reasonable application method is needed for more accurate power system analysis. In this paper, we develop an intelligent load modeling method based. on neural network and application techniques for power system. The proposed method makes it possible to effectively estimate the load model for nonlinear models as well as linear models. Reasonable application method is also proposed for stability analysis. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구 (A Study on the Power System Control and Monitoring Technique Using CAN)

  • 정준홍;최수영;박기헌
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권5호
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

시스템의 수동성과 신경망을 이용한 전력 시스템의 과도 안정도 제어 (Transient Stability Control of Power System using Passivity and Neural Network)

  • 이정원;이용익;심덕선
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.1004-1013
    • /
    • 1999
  • This paper considers the transient stability problem of power system. The power system model is given as interconnected system consisting of many machines which are described by swing equations. We design a transient stability controller using passivity and neural network. The structure of the neural network controller is derived using a filtered error/passivity approach. In general, a neural network cannot be guaranteed to be passive, but the weight tuning algorithm given here do guarantee desirable passivity properties of the neural network and hence of the closed-loop error system. Moreover proposed controller shows good robustness by simulation for uncertainties in parameters, which can not be shown in the speed gradient method proposed by Fradkov[3,7].

  • PDF

산업용 전력계통의 주파수 안정도와 전압 안정도를 고려한 부하차단 설계 (A Design of Load Shedding System Considering both Angular Stability and Voltage Stability in Industrial Power System)

  • 김봉희
    • 전기학회논문지P
    • /
    • 제53권3호
    • /
    • pp.103-109
    • /
    • 2004
  • This paper has presented, taking an example of a gas separation plant, dynamic analysis on frequency decline caused by the over-loading at the generator and the knee point causing voltage instability due to reactive power required by re-acceleration of large induction motors, resulting in phenomena of failure in the conventional frequency load shedding. In order to resolve the voltage instability problem, a design of load shedding system employing under-voltage relays has been proposed to the industrial power system containing large induction motors in addition to the conventional load shedding employing frequency relays. For the purpose of dynamic analysis, models of gas turbine and governor, synchronous generator, brushless exciter, and induction motor are introduced.

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.