• 제목/요약/키워드: Power phase

검색결과 7,648건 처리시간 0.031초

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Single-phase Active Power Filter Based on Rotating Reference Frame Method for Harmonics Compensation

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.94-100
    • /
    • 2008
  • This paper presents a new control method of single-phase active power filter (APF) for the compensation of harmonic current components in nonlinear loads. To facilitate the possibility of complex calculation for harmonic current detection of the single phase, a single-phase system that has two phases was constructed by including an imaginary second-phase giving time delay to the load current. The imaginary phase, which lagged the load current T/4 (Here T is the fundamental cycle) is used in the conventional method. But in this proposed method, the new signal as the second phase is delayed by the filter. Because this control method is applied to a single-phase system, an instantaneous calculation was developed by using the rotating reference frames synchronized to source-frequency rather than by applying instantaneous reactive power theory that uses the conventional fixed reference frames. The control scheme of single-phase APF for the current source with R-L loads is applied to a laboratory prototype to verify the proposed control method.

Compact Dual-Band Three-Way Metamaterial Power-Divider with a Hybrid CRLH Phase-Shift Line

  • Jang, Kyeongnam;Kahng, Sungtek;Jeon, Jinsu;Wu, Qun
    • Journal of electromagnetic engineering and science
    • /
    • 제14권1호
    • /
    • pp.15-24
    • /
    • 2014
  • A compact dual-band three-way metamaterial power divider is proposed that has three in-phase outputs. Fully printed composite rightand left-handed (CRLH) unequal and equal power dividers are first implemented for 900-MHz and 2.4-GHz bands with the power-division ratios of 2:1 and 1:1, respectively. An initial 1:1:1 power divider is then achieved by incorporating the input of the two-way equal block into an output of the unequal block, and trimming the interconnection parameters. The condition of an identical phase at the three outputs of the power divider is then met by devising a hybrid CRLH phase-shift line to compensate for the different phase errors at the two frequencies. This scheme is confirmed by predicting the performance of the power divider with circuit analysis and full-wave simulation and measuring the fabricated prototype. They results show agreement; the in-phase outputs as well as the desirable power-division are accomplished and outdo the conventional techniques.

A Comparative Study on Power Generation Characteristics of Permanent Magnet Synchronous Generators for Green Ship

  • Kato, Shinji;Cho, Gyeong-Rae;Michihira, Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.378-386
    • /
    • 2012
  • For reduction of the amount of CO2 emitted from ships, power generation characteristics of two power generation systems consisting of a high-efficiency permanent magnet synchronous generator and diode bridge rictifiers are discussed in this paper. One of the discussed systems has three-phase stator windings, and the other has two sets of three-phase (six-phase) stator windings to reduce pulsation in the electromagnetic torque and DC current. Experimental results reveal that the power generation efficiency of the system having six-phase stator windings is higher than that of the system having three-phase stator windings for a light load. The maximum power generation efficiency of the system having six-phase stator windings is almost the same as that of the system having three-phase stator windings. For the electromagnetic torque of the system having six-phase stator windings, the width of pulsation is about one-fifth compared to the system having three-phase stator windings.

UPS 기능을 가지는 배터리 기반의 삼상 전력 평준화 시스템 (Three-phase Power Equalizing System with UPS Function based on Battery Storage)

  • 권정민
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.353-358
    • /
    • 2012
  • In this paper, three-phase power equalizing system (PES) with UPS function is proposed. This system is based on NiMH battery with battery management system. The power conversion circuit is composed with the three-phase converter/inverter, the bi-directional converter, and the thyristor switches. The three-phase converter/inverter provides the power to the grid or get the power from the grid. Also, it operates as a UPS. The bi-directional converter charges or discharges the battery. The thyristor switches are used for connecting/disconnecting with the grid and the load. A 15 kW prototype is implemented for the verifying the performance of the proposed system.

Research on Discontinuous Pulse Width Modulation Algorithm for Single-phase Voltage Source Rectifier

  • Yang, Xi-Jun;Qu, Hao;Tang, Hou-Jun;Yao, Chen;Zhang, Ning-Yun;Blaabjerg, Frede
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.433-445
    • /
    • 2014
  • Single phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). As the fundamental part of large scale PECs, single-phase VSC has a wide range of applications. In the paper, as first, on the basis of the concept of the discontinuous pulse-width modulation (DPWM) for three-phase VSC, a new DPWM of single-phase VSR is presented by means of zero-sequence component injection. Then, the transformation from stationary frame (abc) to rotating frame (dq) is designed after reconstructing the other orthogonal current by means of one order all-pass filter. Finally, the presented DPWM based single-phase VSR is established analyzed and simulated by means of MATLAB/SIMULINK. In addition, the DPWMs presented by D. Grahame Holmes and Thomas Lipo are discussed and simulated in brief. Obviously, the presented DPWM can also be used for single-phase VSI, GCI and APF. The simulation results show the validation of the above modulation algorithm, and the DPWM based single-phase VSR has reduced power loss and increased efficiency.

저압 모의선로에 소형발전원 연계시 특성 (Connected Characteristics for Small Generation Source of Low Voltage Model Grids)

  • 이상우;강진규;이동하;박태준
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.45-53
    • /
    • 2013
  • In this paper, we analyze the typical phase voltage and line current waveform characteristics of the distribution system with 3 phase small synchronous generation source in case with load and non-load group, in order to investigate the power quality for end load connected of generation source. As demonstrated by our experimental results, the distortion and power quality of phase voltage and line current waveform were relatively good for low voltage 3 phase model grids connected of 3 phase small synchronous generation source in case with non-load group. However, distortion and power quality of voltage and current waveform was poor for low voltage 3 phase model grids connected to 3 phase small synchronous generation source in the load group with some phase voltage and frequency difference. From the above results, we conclude that the phase voltage and frequency of 3 phase generation source must be identical to that of distribution system source to maximize the power quality. Also, special attention is required in case of having load group or non-load group to 3 phase generation source.

무선 통신 시스템 응용을 위한 초소형화된 능동형 90°C 위상차 전력 분배기와 결합기에 관한 연구 (The Study on Highly Miniaturized Active 90°C Phase Difference Power Divider and Combiner for Application to Wireless Communication)

  • 박영배;강석엽;윤영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.144-152
    • /
    • 2009
  • This paper propose highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner for application to wireless communication system. The conventional passive $90^{\circ}C$ power divider and combiner cannot be integrated on MMIC because of their very large circuit size. Therefore, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner are required for a development of highly integrated MMIC. In this paper, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner employing InGaAs/GaAs HBT were designed, fabricated on GaAs substrate. According to the results, the circuit size of fabricated active $90^{\circ}C$ phase difference power divider and combiner were $1.67{\times}0.87$ mm and $2.42{\times}1.05$ mm, respectively, which were 31.6% and 2.2% of the size of conventional passive branch-line coupler. The output gain division characteristic of proposed divider circuit showed 8.4 dB and 7.9 dB respectively, and output phase difference characteristic showed $-89.3^{\circ}C$. The output gain coupling characteristic of proposed combiner circuit showed 9.4 dB and 10.5 dB respectively, and output phase difference characteristic showed $-92.6^{\circ}C$. The highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner exhibited good RF performances compared with the conventional passive branch-line coupler.

A Performance of Single Phase Switched Reluctance Motor having both Radial and Axial air gap

  • 임준영;정윤철;권경안
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.184-188
    • /
    • 1999
  • Switched Reluctance Motor has doubly salient poles in stator and rotor, windings are wound in just stator and no magnet or windings on the rotor. This configuration is robust mechanically and thermally. The inverter of SRM is more robust than that of induction or brushless DC(BLDC) motor, but still its drive is comparatively expensive for home appliance. To drive the conventional three or four-phase SRM, 6 to 8 power switches are required when asymmetric bridge inverter is employed. Generally, more than 50% of the cost for the SRM drive is allocated to power devices and gate drives. This paper proposed single phase SRM that have both radial and axial air gaps. The stator and rotor were stacked with two types of stampings that have different diameters. This configuration is very effective to increase align inductance(Lmax). The high value of Lmax increases the motor efficiency and power density. The proposed single phase SRM(Claw SRM) can be driven by only two power switches. To show the validity of the proposed idea, the analysis using finite element method(FEM) and experimental works are carried out. The proposed SPSRM can be driven with high efficiency and can be made compactly and inexpensively because of high value of align inductance and less number of switches. For the comparison, we used same stator for three-phase and single phase, and slightly different stator and rotor for proposed single phase SRM(Claw SRM)

  • PDF

무정전 결상 보상장치에 관한 연구 (A Study on the Uninterruptible Power Open Phase Compensation Device)

  • 송영주;오진택;김나운;신혜영
    • 조명전기설비학회논문지
    • /
    • 제28권8호
    • /
    • pp.75-81
    • /
    • 2014
  • It has been widely accepted that open phase may separate one of the power lines from power supply which is mainly caused by fuse melting, malfunction for source circuit breaker, contact failure, and disconnection under normal operating conditions, and is considered a kind of failure mode during disconnection of neutral wires as well. When open phase occurs, unequal voltage between phase might happen in the unbalanced load connected each phase, and further, depending on conditions of load, malfunction by providing low voltage. Moreover, load could be burned or overheated with overvoltage, which, in turn, can be a contributor to starting fires. Accordingly, in order to clearly overcome these problems, the current study aims to introduce the theory of uninterruptible power open phase compensation device, meaning that unbalanced power automatically restores balanced power and provides continuously the power supply without blackout, and verify it through simulation and experiments.