• Title/Summary/Keyword: Power parameters

Search Result 5,767, Processing Time 0.029 seconds

Power t distribution

  • Zhao, Jun;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.321-334
    • /
    • 2016
  • In this paper, we propose power t distribution based on t distribution. We also study the properties of and inferences for power t model in order to solve the problem of real data showing both skewness and heavy tails. The comparison of skew t and power t distributions is based on density plots, skewness and kurtosis. Note that, at the given degree of freedom, the kurtosis's range of the power t model surpasses that of the skew t model at all times. We draw inferences for two parameters of the power t distribution and four parameters of the location-scale extension of power t distribution via maximum likelihood. The Fisher information matrix derived is nonsingular on the whole parametric space; in addition we obtain the profile log-likelihood functions on two parameters. The response plots for different sample sizes provide strong evidence for the estimators' existence and unicity. An application of the power t distribution suggests that the model can be very useful for real data.

Seismic Response Analyses for Whole Power Block of Nuclear Facilities Considering Structure-Soil-Structure Interaction and Various Parameters (원자력발전소 파워블럭에 대한 구조물-지반-구조물 상호 작용과 다양한 매개변수를 고려한 지진응답해석)

  • Seo, Choon Gyo;Jang, Dong Hui;Jung, Du Ri;Chang, Soo Hyuk;Moon, Il Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.333-343
    • /
    • 2018
  • In this paper, we study the existing results of the structure-soil-structure interaction (SSSI) effect on seismic responses of structures and summarize important parameters. The parameters considered in this study are a combination of buildings in the power block of a nuclear power plant, the characteristics of earthquake ground motions and its direction, and the characteristics embedded under the ground. Based on these parameters, the seismic analysis model of the structures in the power block of the nuclear power plant is developed and the structure-soil-structure interaction analyses are performed to analyze the influence of the parameters on the seismic response. For all analyses, the soil-structure interaction (SSI) analysis program CNU-KIESSI, which was developed to enable large-sized seismic analysis, is used. In addition, the SSI analyses is performed on individual structures and the results are compared with the SSSI analysis results. Finally, the influence of the parameters on the seismic response of the structure due to the SSSI effect is reviewed through comparison of the analysis results.

Power Parameters Analysis and Evaluation using Visualization of Distortion Factor for Motor Drive System (전동기 구동 시스템의 왜형률 가시화에 의한 전력 파라미터 분석 및 평가)

  • 임영철;정영국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 1998
  • The goal of this paper is to propose analyzing and evaluating method of power parameters for motor drive system with various experimental graphic screens and numerical results and to develop the proposed system. A developed system is made up 586-PC and DSP board, motor drive system, power parameters analyzing and evaluating software for windows. Power parameters are analyzed using correlation signal processing techniques based on the correlation between voltage and current waveforms. Analysis results are visualized by 3-D current coordinates, and it is compared and evaluated with conventional time/ frequency domain. To verify the validity of the proposed system, capacitor run type single phase induction motor and thyristor speed controller is used for analyzing. Power and harmonic parameters of motor drive system is analyzed and verified, with varying fire angle of thyristor speed controller, and the proposed approach is to confirm validity.

Power Transmission Determined by the Mutual Impedance and the Transducer Power Gain in the Near Field Region

  • Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.152-155
    • /
    • 2011
  • This paper describes the role of mutual impedance and the transducer power gain which comes from key parameters to determine the amount of wireless power especially in a near-field environment. These two key parameters are applied to the two configurations; one is a dipole-dipole, and the other is a dipole-metal plate-loop configuration. Discussions are given on the achievable maximum power transfer between the sender and the receiver affected by the matching and the pass blockage.

An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

  • Jeong, Sangyeong;Kim, Mina;Jung, Jee-Hoon;Kim, Jingook
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.208-220
    • /
    • 2017
  • This paper proposes an experimental optimization method for a wireless power transfer (WPT) system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Representative Dissolved Gases indicating Aging of Power Transformers (전력용 변압기 경년열화와 관련된 DGA 대표가스에 관한 연구)

  • Kweon, Dongjin;Kim, Yonghyun;Joo, Byoungsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • The life management technology becomes important as the failure risk of the aged power transformers increases. Asset management technology, therefore, has been developed to evaluate the remaining life and build replacement strategies of power transformers, which enables an optimal investment decisions based on reliability and economic feasibility. The remaining life assessment technology uses data related to such as installation, operation, maintenance, refurbishment, and disposed history of power transformers. The optimal investment decision additionally uses data related to failure and social costs. To develop the asset management technology in power transformers, it is important to find deterioration parameters directly indicating degradation of power transformers. In this study, 110,000 DGA data during the past 35 years have been analyzed in order to find the deterioration parameters related to the degradation of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, $C_2H_6$), TCG CO, and $CO_2$ were analyzed as deterioration parameters. The origin of the gas was discussed in connection with discharge, overheating and insulation aging.

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.