• 제목/요약/키워드: Power modeling

검색결과 3,046건 처리시간 0.027초

8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석 (Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer)

  • 이충노;홍기창;정헌술
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

Numerical simulation of wind loading on roadside noise mitigation structures

  • TSE, K.T.;Yang, Yi;Shum, K.M.;Xie, Zhuangning
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.299-315
    • /
    • 2013
  • Numerical research on four typical configurations of noise mitigation structures and their characteristics of wind loads are reported in this paper. The turbulence model as well the model parameters, the modeling of the equilibrium atmospheric boundary layer, the mesh discretization etc., were carefully considered in the numerical model to improve the numerical accuracy. Also a numerical validation of one configuration with the wind tunnel test data was made. Through detailed analyses of the wind load characteristics with the inclined part and the wind incidence angle, it was found that the addition of an inclined part to a noise mitigation structure at-grade would affect the mean nett pressure coefficients on the vertical part, and that the extent of this effect depends on the length of the inclined part itself. The magnitudes of the mean nett pressure coefficients for both the vertical part and the inclined part of noise mitigation structure at-grade tended to increase with length of inclined part. Finally, a comparison with the wind load code British/European Standard BS EN 1991-1-4:2005 was made and the envelope of the mean nett pressure coefficients of the noise mitigation structures was given for design purposes. The current research should be helpful to improve current wind codes by providing more reasonable wind pressure coefficients for different configurations of noise mitigation structures.

다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링 (Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers)

  • 이현진;김종규;이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

RELAP5/MOD2 코드에 의한 대형냉각재 상실사고 모사실험 L2-3의 열수력 현상 예측 (Prediction of Thermal-Hydraulic Phenomena in the LBLOCA Experiment L2-3 Using RELAP5/MOD2)

  • Bang, Young-Seok;Chung, Bub-Dong;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.56-65
    • /
    • 1991
  • RELAP5/MOD2 Cycle 36.04코드를 이용하여 LOFT대형냉각재 상실사고 모사실험 L2-3를 계산함으로써 코드의 대형냉각재상실사고에 관련된 열수력현상 예측능력을 평가하였다. 기본계산에서 원자로 압력용기는 이중노심유로와 분리강수관 모델로 모사되었다. 기본계산의 결과 계통의 전반적인 수력학적 거동과 감압기간동안 노심 고출력 부위에서의 열적 거동은 비교적 타당하게 예측되었다. 한편 과냉각-이상유동의 천이 기간동안 임계유량모델, 고질량유속에서의 임계열유속 상관식, 감압기간중의 재접수(Blowdown Rewet)의 판정기준등 코드의 모델/상관식의 부분적 결함이 발견되었다. 이 결함들에 의해 냉각재 재고량이 과대 평가되어 재환수기간의 노심의 열적거동 예측의 정확도가 감소되었다. RELAP5/MOD2 Cycle 36.04로 부터 개선된 코드를 사용한 계산 결과 재접수 현상의 예측 정확도를 개선할 수 있었다.

  • PDF

Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

  • Heo, Jin Young;Park, Jung Hwan;Chae, Yong Jae;Oh, Seung Hwan;Lee, So Young;Lee, Ju Yeon;Gnanapragasam, Nirmal;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2427-2444
    • /
    • 2021
  • The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

3층 전단벽 구조물의 지진응답에 관한 수치해석 (Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure)

  • 박다원;최영준;홍정욱
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.

3D 프린터의 챔버 내부온도 변화에 대한 연구 (The Basic Study of Internal Temperature Variation in a 3D Printer(FDM-type) Chamber)

  • 신근식;권현규;강용구
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.33-40
    • /
    • 2019
  • FDM 3D printers have become widespread, and investment in the 3D printer industry is increasing. Therefore, many 3D printers are released and the functions of products are emphasized. However, to lower unit prices, open-type 3D printers are sold in kit form, and their performance is very low. If the 3D printer has many heat sources and is sealed, there is the possibility that the main accessories (the main board, power supply, and motor) will be damaged by trapped heat. At the same time, if the ambient temperature is low due to the properties of the material, the output quality deteriorates. In this study, we analyzed the temperature rise of the main accessories and the quality of the output by the heat bed when a chamber was added to an open-type 3D printer. We also compared the quality of the output due to the air flow with the temperature rise of the main accessories. Moreover, we found the optimal value. As a result of the quality analysis, it was finally confirmed that the case with the chamber at $95^{\circ}C$ was the best for the printing condition. In addition, in the absence of the chamber, the bending of the specimen was found to be large, and in the case of the chamber, the degree of bending was slightly decreased by 0.05 mm.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

TSSEM을 이용한 정보 프라이버시 메타분석 (Meta-Analysis of Information Privacy Using TSSEM)

  • 김종기
    • 디지털융복합연구
    • /
    • 제17권11호
    • /
    • pp.149-156
    • /
    • 2019
  • 정보기술의 활용이 보편화되면서 대중과 연구자 모두 정보 프라이버시 문제에 대한 관심이 높아지고 있다. 이러한 문제에 대한 연구가 기하급수적으로 증가하면서 연구결과에 대한 전반적인 이해가 어려워졌다. 이에 따라 과거연구에 대한 체계적인 검토가 요구된다. 본 연구는 정보 프라이버시 연구에 핵심적인 네 가지 연구개념을 두 가지 연구모형으로 설정하고 기존 연구에서 수집된 데이터를 이용하여 실증 분석하였다. TSSEM이라는 정량적 메타분석 기법이 적용되었는데, 이 기법은 MASEM의 한 가지로서 구조방정식모형과 메타분석 기법을 통합하여 분석하는 기능을 제공한다. 분석결과는 위험 중심적 모형이 염려 중심적 모형과 비교하여 보다 높은 모형 적합도를 나타내었다. 본 연구의 결과는 전통적인 염려 중심적 모형의 설명력에 의문을 제시하며, 사용자의 프라이버시 정보 제공의도를 설명하기 위하여 위험 중심적 모형을 고려할 필요가 있다는 점을 시사한다.