• Title/Summary/Keyword: Power integrity analysis

Search Result 325, Processing Time 0.033 seconds

A Sensitivity Study of a Steam Generator Tube Rupture for the SMART-P (SMART 연구로의 증기발생기 전열관 파열사고 민감도 분석)

  • Kim Hee-Kyung;Chung Young-Jong;Yang Soo-Hyung;Kim Hee-Cheol;Zee Sung Quun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.32-37
    • /
    • 2005
  • The purpose of this study is for the sensitivity study f9r a Steam Generator Tube Rupture (SGTR) of the System-integrated Modular Advanced ReacTor for a Pilot (SMART-P) plant. The thermal hydraulic analysis of a SGIR for the Limiting Conditions for Operation (LCO) is performed using TASS/SMR code. The TASS/SMR code can calculate the core power, pressure, flow, temperature and other values of the primary and secondary system for the various initiating conditions. The major concern of this sensitivity study is not the minimum Critical Heat Flux Ratio(CHFR) but the maximum leakage amount from the primary to secondary sides at the steam generator. Therefore the break area causing the maximum accumulated break flow is researched for this reason. In the case of a SGIR for the SMART-p, the total integrated break flow is 11,740kg in the worst case scenario, the minimum CHFR is maintained at Over 1.3 and the hottest fuel rod temperature is below 606"I during the transient. It means that the integrity of the fuel rod is guaranteed. The reactor coolant system and the secondary system pressures are maintained below 18.7MPa, which is system design pressure.

Damage Estimation of Structures by Second Order Modal Perturbation (2차 모우드 섭동법에 의한 구조물의 손상도 추정)

  • 홍규선;윤정방;류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.119-126
    • /
    • 1992
  • Most civil engineering structures such as bridges, power plants, and offshore platforms are apt to suffer structural damages over their service lives caused by adverse loadings, such as earthquakes, wind and wave forces. Accumulation of structural damages over a long period of time might cause catastrophic structural failure. Therefore, a methodology for monitoring the structural integrity is essential for assuring the safety of the existing structures. A method for the damage assessment of structures by the second order inverse modal perturbation technique is presented in this paper. Perturbation equation consists of a matrix equation involving matrices of structural changes(stiffness and mass matrix changes) and matrices of modal property changes(natural frequency and mode shape changes). The damages of a structure are represented as changes in the stiffness matrix. In this study, a second order perturbation equation is formulated for the damage assessment of structures, and solved by an iterative procedure. The effectiveness of the proposed method has been investigated through a series of example analysis. The estimated results for the structural damage indicated that the present method yields resonable estimates for the structural changes.

  • PDF

Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT (가변 피치형 수평축 풍력 터빈의 공력 최적설계 및 피치제어 성능 연구)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.891-898
    • /
    • 2007
  • Optimal aerodynamic design for the pitch-controlled horizontal axis wind turbine and its aerodynamic performance for various pitch angles are performed numerically by using the blade element momentum theory. The numerical calculation includes effects such as Prandtl‘s tip loss, airfoil distribution, and wake rotation. Six different airfoils are distributed along the blade span, and the special airfoil i.e. airfoil of 40% thickness ratio is adopted at the hub side to have structural integrity. The nonlinear chord obtained from the optimal design procedure is linearized to decrease the weight and to increase the productivity with very little change of the aerodynamic performance. From the comparisons of the power, thrust, and torque coefficients with corresponding values of different pitch angles, the aerodynamic performance shows delicate changes for just $3^{\circ}$ increase or decrease of the pitch angle. For precisive pitch control, it requires the pitch control algorithm and its drive mechanism below $3^{\circ}$ increment of pitch angle. The maximum torque is generated when the speed ratio is smaller than the designed one.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

Performance Analysis of Open Source Based Distributed Deduplication File System (오픈 소스 기반 데이터 분산 중복제거 파일 시스템의 성능 분석)

  • Jung, Sung-Ouk;Choi, Hoon
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.623-631
    • /
    • 2014
  • Comparison of two representative deduplication file systems, LessFS and SDFS, shows that Lessfs is better in execution time and CPU utilization while SDFS is better in storage usage (around 1/8 less than general file systems). In this paper, a new system is proposed where the advantages of SDFS and Lessfs are combined. The new system uses multiple DFEs and one DSE to maintain the integrity and consistency of the data. An evaluation study to compare between Single DFE and Dual DFE indicates that the Dual DFE was better than the Single DFE. The Dual DFE reduced the CPU usage and provided fast deduplication time. This reveals that proposed system can be used to solve the problem of an increase in large data storage and power consumption.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

Blockchain-based Data Storage Security Architecture for e-Health Care Systems: A Case of Government of Tanzania Hospital Management Information System

  • Mnyawi, Richard;Kombe, Cleverence;Sam, Anael;Nyambo, Devotha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.364-374
    • /
    • 2022
  • Health information systems (HIS) are facing security challenges on data privacy and confidentiality. These challenges are based on centralized system architecture creating a target for malicious attacks. Blockchain technology has emerged as a trending technology with the potential to improve data security. Despite the effectiveness of this technology, still HIS are suffering from a lack of data privacy and confidentiality. This paper presents a blockchain-based data storage security architecture integrated with an e-Health care system to improve its security. The study employed a qualitative research method where data were collected using interviews and document analysis. Execute-order-validate Fabric's storage security architecture was implemented through private data collection, which is the combination of the actual private data stored in a private state, and a hash of that private data to guarantee data privacy. The key findings of this research show that data privacy and confidentiality are attained through a private data policy. Network peers are decentralized with blockchain only for hash storage to avoid storage challenges. Cost-effectiveness is achieved through data storage within a database of a Hyperledger Fabric. The overall performance of Fabric is higher than Ethereum. Ethereum's low performance is due to its execute-validate architecture which has high computation power with transaction inconsistencies. E-Health care system administrators should be trained and engaged with blockchain architectural designs for health data storage security. Health policymakers should be aware of blockchain technology and make use of the findings. The scientific contribution of this study is based on; cost-effectiveness of secured data storage, the use of hashes of network data stored in each node, and low energy consumption of Fabric leading to high performance.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.