• Title/Summary/Keyword: Power information

Search Result 16,619, Processing Time 0.038 seconds

A CLB-based CPLD Low-power Technology Mapping Algorithm considered a Trade-off

  • Youn, Choong-Mo;Kim, Jae-Jin
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.59-63
    • /
    • 2007
  • In this paper, a CLB-based CPLD low-power technology mapping algorithm considered a Trade-off is proposed. To perform low-power technology mapping for CPLDs, a given Boolean network has to be represented in a DAG. The proposed algorithm consists of three steps. In the first step, TD(Transition Density) calculation has to be performed. Total power consumption is obtained by calculating the switching activity of each node in a DAG. In the second step, the feasible clusters are generated by considering the following conditions: the number of inputs and outputs, the number of OR terms for CLB within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low-power technology mapping based on the CLBs packs the feasible clusters. The proposed algorithm is examined using SIS benchmarks. When the number of OR terms is five, the experiment results show that power consumption is reduced by 30.73% compared with TEMPLA, and by 17.11 % compared with PLA mapping.

LSTM Model-based Prediction of the Variations in Load Power Data from Industrial Manufacturing Machines

  • Rita, Rijayanti;Kyohong, Jin;Mintae, Hwang
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2022
  • This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory (LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger amount of data.

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.

Research on the Methode of Construction Information Management Considering the Nuclear Power Plant Life Cycle (원자력발전소 생애주기를 고려한 시공정보 관리방안 연구)

  • Byon, Su-jin;Lee, Sang-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.229-230
    • /
    • 2016
  • The Nuclear Power Plant construction industry has the related to Information-integration field. In this study, the end user developed an Information Management System early in the project, and developed a management structure that systematically integrates and interfaces with information in each life-cycle phase. Particularly this paper related to the construction information of component.

  • PDF

Power Analysis Attacks on Blinding Countermeasure against Horizontal CPA (수평적 상관관계 분석에 안전한 블라인딩 대응기법에 대한 전력 분석 공격)

  • Lee, Sangyub;Kim, Taewon;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.727-738
    • /
    • 2015
  • Until recently, power analysis is one of the most popular research issues among various side channel analyses. Since Differential Power Analysis had been first proposed by Kocher et al., various practical power analyses correspond with software/hardware cryptographic devices have been proposed. In this paper, we analyze vulnerability of countermeasure against power analysis exploiting single power trace of public cryptographic algorithm. In ICICS 2010, Clavier et al. proposed Horizontal Correlation Analysis which can recover secret information from a single exponentiation trace and corresponding countermeasures. "Blind operands in LIM", one of their countermeasures, exploits additive blinding in order to prevent leakage of intermediate value related to secret information. However, this countermeasure has vulnerability of having power leakage that is dependant with the message known by an adversary. In this paper, we analyzed vulnerabilities by three attack scenarios and proved them by practical correlation power analysis experiments.

Robust Transceiver Designs in Multiuser MISO Broadcasting with Simultaneous Wireless Information and Power Transmission

  • Zhu, Zhengyu;Wang, Zhongyong;Lee, Kyoung-Jae;Chu, Zheng;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.173-181
    • /
    • 2016
  • In this paper, we address a new robust optimization problem in a multiuser multiple-input single-output broadcasting system with simultaneous wireless information and power transmission, where a multi-antenna base station (BS) sends energy and information simultaneously to multiple users equipped with a single antenna. Assuming that perfect channel-state information (CSI) for all channels is not available at the BS, the uncertainty of the CSI is modeled by an Euclidean ball-shaped uncertainty set. To optimally design transmit beamforming weights and receive power splitting, an average total transmit power minimization problem is investigated subject to the individual harvested power constraint and the received signal-to-interference-plus-noise ratio constraint at each user. Due to the channel uncertainty, the original problem becomes a homogeneous quadratically constrained quadratic problem, which is NP-hard. The original design problem is reformulated to a relaxed semidefinite program, and then two different approaches based on convex programming are proposed, which can be solved efficiently by the interior point algorithm. Numerical results are provided to validate the robustness of the proposed algorithms.

Development a Distributed Power Information System Based on Event using XML (XML을 이용한 이벤트 기반 분산 전력 정보 시스템 개발)

  • Kim, Jung-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.89-96
    • /
    • 2009
  • In the future energy environment, a power information system will meet the real-time capability to process the emergency events, unexpected blackouts or over-load, and the high performance to provide the consumer service events such as remote meter reading. In addition to, it must have facility which is able to process a large information occurred on system effectively. In this paper, we developed a distributed power information system based on event with metadata processing technique which was both load balancing and decreased hot spot using XML that was efficient for information exchange. In order to experiment, we made a reduced future power system with controling power device using wireless communications and we could do experiments through it.

Power Control Scheme Based on Non-Cooperative Game in a Heterogeneous Network (이종 네트워크에서의 비협력 게임 기반 전력 할당 기법)

  • Bae, Insan;Lee, Jinnyoung;Jang, Sungjin;Kim, Jaemoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.771-778
    • /
    • 2014
  • We propose Femto-cell power control scheme in HeNet with Game Theory. The Femto-cell which provide high quality with low power is issued by many benefits, however there is a bunch of interferences when many Femto-cells use overlapped bandwidth with Macro-cell. We defined base station of cellular networks and mobile users as players of Game Theory, and configured interference effect among each other as power utility function. Futhermore, we showed enhanced overall system performance, lower power usage and interference decrease by using optimal power.

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.

Joint Opportunistic Spectrum Access and Optimal Power Allocation Strategies for Full Duplex Single Secondary User MIMO Cognitive Radio Network

  • Yue, Wenjing;Ren, Yapeng;Yang, Zhen;Chen, Zhi;Meng, Qingmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3887-3907
    • /
    • 2015
  • This paper introduces a full duplex single secondary user multiple-input multiple-output (FD-SSU-MIMO) cognitive radio network, where secondary user (SU) opportunistically accesses the authorized spectrum unoccupied by primary user (PU) and transmits data based on FD-MIMO mode. Then we study the network achievable average sum-rate maximization problem under sum transmit power budget constraint at SU communication nodes. In order to solve the trade-off problem between SU's sensing time and data transmission time based on opportunistic spectrum access (OSA) and the power allocation problem based on FD-MIMO transmit mode, we propose a simple trisection algorithm to obtain the optimal sensing time and apply an alternating optimization (AO) algorithm to tackle the FD-MIMO based network achievable sum-rate maximization problem. Simulation results show that our proposed sensing time optimization and AO-based optimal power allocation strategies obtain a higher achievable average sum-rate than sequential convex approximations for matrix-variable programming (SCAMP)-based power allocation for the FD transmission mode, as well as equal power allocation for the half duplex (HD) transmission mode.