• Title/Summary/Keyword: Power harvesting system

Search Result 234, Processing Time 0.033 seconds

AUTOMATIC LEVELING CONTROL SYSTEM FOR COMBINE

  • Lee, S. S.;K. S. Oh;H. Hwang;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.684-689
    • /
    • 2000
  • In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem, automatic leveling control system for a combine has been developed and tested. The system was composed of the sensor for measuring left and right inclination of the combine chassis and the hydraulic control system. The adaptability of the control system was investigated by analyzing system response in time domain. And the limit angle of the leveling control was set up to be +/- 7$^{\circ}$. The proposed control and hydraulic power system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with chassis and track. This paper shows results of the leveling performance tested in the laboratory and the grain field.

  • PDF

A Solar Energy Harvesting Circuit with Low-Cost MPPT Control for Low Duty-Cycled Sensor Nodes. (낮은 듀티 동작의 센서 노드를 위한 저비용 MPPT 제어기능을 갖는 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.397-400
    • /
    • 2015
  • In this paper a solar energy harvesting system with low-cost MPPT control for low duty-cycled sensor nodes is proposed. The targeted applications are environment, structure monitoring sensor nodes that are not required successively to operate, and MPPT(Maximum Power point Tracking) control using simple circuits is low-cost differently than existing MPPT control. The proposed MPPT control is implemented using linear relationship between the open-circuit voltage of a solar cell. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the solar cell and delivers the maximum available power to the load. The proposed circuit is designed in 0.35um CMOS process. The designed chip area is $975um{\times}1025um$ including pads. Measured results show that the designed system can track the MPP voltage by sampling periodically the open circuit voltage of solar cell.

  • PDF

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

Low-Power MPPT Interface for Vibration Energy Harvesting Sources (진동 에너지 하베스팅 자원을 위한 저전력 MPPT 인터페이스)

  • Song, Soo-Min;Kim, Hyun-Chul;Lee, Eun-Gyeong;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.39-42
    • /
    • 2018
  • In this paper, a low-power MPPT interface circuit for vibration energy harvesting sources is presented. The designed circuit rectifies the harvested ac type energy to the dc type energy required to drive the system, and periodically samples and holds the open circuit voltage (Voc) through the MPPT controller, and transfers the harvested power to the load while maintaining the input voltage at 1/2 of the maximum available power point. All circuits have been designed using a 0.35-um CMOS technology, and the operation has been verified through simulation. Simulation results show that the designed circuit consumes 98nA of current at 3V input voltage and the maximum power efficiency is 99.21%. The designed chip occupies $1.281mm{\times}1.236mm$.

  • PDF

A Development of P-EH(Practical Energy Harvester) Platform for Non-Linear Energy Harvesting Environment in Wearable Device (비연속적 에너지 발전 환경을 고려한 웨어러블 기반 P-EH 플랫폼 개발)

  • Park, Hyun-Moon;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1093-1100
    • /
    • 2018
  • Fast progress in miniaturization and reducing power consumption of semiconductors for wearable devices makes it possible to develop extremely small wearable systems for various application services. This results recent wearable applications to be powered from extremely low-power energy harvesters based on solar, piezo, and TENG sources. In most cases, the harvesters generate power in non-linear manner. Therefore, we implemented and experimented the device platforms to utilize natural frequency of around 3Hz. We also designed two-stage power storages and high efficiency conversion platform to consider such non-linear power harvesting sources. The experiment showed power generation of about 4.67mW/min from these non-linear sources with provision of stable energy storages.

Analysis of load data for developing a self-propelled underground crop harvester during potato harvesting

  • Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Wan Soo, Kim;Ryu Gap, Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.845-855
    • /
    • 2022
  • The purpose of this study is to develop a self-propelled underground crop harvester and its performance was evaluated by measuring the load during actual potato harvesting operations. This study was conducted at a constant working speed of 1 km·h-1. A load measurement system was installed to measure the actual load and the required working power was analyzed. A hydraulic pressure sensor was also installed to measure the hydraulic pressure. The required hydraulic power was calculated using the hydraulic pressure and flow rate. The results showed that the engine speed, torque, and power during harvesting operation were in the range of 845 - 1,423 rpm, 95 - 228 Nm, and 9 - 31 kW, respectively. Traction power, excluding the hydraulic pump of the tractor and power take-off (PTO) output, was in the range of 9 - 28 kW, and it was confirmed that it occupies a ratio of 16.2 to 50% of the engine rated output. The engine can supply the minimum required traction power to move the vehicle. This means that the engine used in this study could be down-sized to be suitable for an underground crop harvester. In this study, the gear stages of the tractor were not considered. This research thus shows the possibility of developing a self-propelled underground crop harvester.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

Implementation of Bistatic Backscatter Wireless Communication System Using Ambient Wi-Fi Signals

  • Kim, Young-Han;Ahn, Hyun-Seok;Yoon, Changseok;Lim, Yongseok;Lim, Seung-ok;Yoon, Myung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1250-1264
    • /
    • 2017
  • This paper presents the architecture design, implement, experimental validation of a bistatic backscatter wireless communication system in Wi-Fi network. The operating principle is to communicate a tag's data by detecting the power level of the power modulated Wi-Fi packets to be reflected or absorbed by backscatter tag, in interconnecting with Wi-Fi device and Wi-Fi AP. This system is able to provide the identification and sensor data of tag on the internet connectivity without requiring extra device for reading data, because this uses an existing Wi-Fi AP infrastructure. The backscatter tag consists of Wi-Fi energy harvesting part and a backscatter transmitter/a power-detecting receiver part. This tag can operate by harvesting and generating energy from Wi-Fi signal power. Wi-Fi device decodes information of the tag data by recognizing the power level of the backscattered Wi-Fi packets. Wi-Fi device receives the backscattered Wi-Fi packets and generates the tag's data pattern in the time-series of channel state information (CSI) values. We believe that this system can be achieved wireless connectivity for ultra- low-power IoT and wearable device.

Research and Implementation of Using RF wireless Power Transmission System for Wireless Sensor Nodes Battery-Charging Power Harvesting Module (RF 무선전력전송을 이용한 센서노드 배터리 충전용 전력획득모듈 연구 및 구현)

  • Jung, Won-Jae;Park, Jun-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.34-42
    • /
    • 2011
  • With the progress of USN technology, fields to which wireless sensor node is applicable are increased under a condition that it holds a lot of problems to solve for betterment. One of the problems which acts as an obstacle to USN industry diffusion is the wireless sensor node battery exchange to their individual life cycle. Exchanging the battery of so many sensor nodes one by one requires a great deal of times and costs. Such problem is against the convenience supply -aim by applying USN technology. In this paper, using RF wireless power transmission system that power transmission / harvesting module from a distance of 5 m and the power of 10 dBm with a current of 1 mA or more for Sensor Nodes in lithium-polymer battery charging system tested and verified.

Analysis of Electromotive Force Characteristics for Electromagnetic Energy Harvester using Ferrofluid

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.252-257
    • /
    • 2015
  • This paper investigates the concept and implementation of an energy harvesting device using a ferrofluid sloshing movement to generate an electromotive force (EMF). Ferrofluids are often applied to energy harvesting devices because they have both magnetic properties and fluidity, and they behave similarly to a soft ferromagnetic substance. In addition, a ferrofluid can change its shape freely and generate an EMF from small vibrations. The existing energy harvesting techniques, for example those using piezoelectric and thermoelectric devices, generate minimal electric power, as low as a few micro-watts. Through flow analysis of ferrofluids and examination of the magnetic circuit characteristics of the resultant electromagnetic system, an energy harvester model based on an electromagnetic field generated by a ferrofluid is developed and proposed. The feasibility of the proposed scheme is demonstrated and its EMF characteristics are discussed based on experimental data.