• Title/Summary/Keyword: Power fluctuation

Search Result 603, Processing Time 0.025 seconds

A Study on the Outside Rotor Type Induction Motor (외측회전형 유도전동기에 관한 연구)

  • 김현수;배철오;김종수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.812-818
    • /
    • 2003
  • This paper presents a developed outside rotor type induction motor for the fan. Nearly all of the induction motors consist of two parts, rotor and stator, and the position of rotor is generally inside of stator. However, the rotor of the developed induction motor is located outside of stator. It is believed that the outside rotor type induction motor is suitable for the fan due to its large inertia, that is, it is considered that the change of air flow rate resulting from input power or load fluctuation is reduced. In this paper, the two tests which are suitable to obtain the electrical parameters of the outside rotor type induction motor were described, then various parameters of outside rotor type induction motor were measured. These are the locked rotor test and no load test. By using these tests, it was possible to determine the parameters which are presented in the steady-state equivalent-circuit of the outside rotor type induction motor. Load test of induction motor was carried out using a dynamometer and the torque-speed curve was obtained. It is believed that the results of this paper can be used for the development of the outside rotor type induction motor.

Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition (Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어)

  • Kwon, Min-Su;Lee, Min-Kwang;Kim, Jun-Soo;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

Performance of CEFSK Systems in Nonlinear Channel Environments (비선형 채널 환경에서 CEFSK 시스템의 성능)

  • Lee, Kee-Hoon;Choi, Byeong-Woo;Shin, Kwan-Ho;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.79-87
    • /
    • 2013
  • A new modulation technique - correlative encoded FSK (CEFSK) - for use in power and bandwidth limited digital communication system is proposed. CEFSK is free of ISI and generates output signals which have a smooth and continuous phase transition and a reduced envelope fluctuation by keeping correlation between amplitude and phases of two subsequent symbols. In comparison to conventional one-bit differential detected (1DD) GFSK, the performance of the 1DD-CEFSK in a non-linearly amplified (NLA) channel impaired by additive white Gaussian noise (AWGN), ISI and IM, is analyzed via computer simulation. The simulation result shows that, in an NLA single-channel, 1DD-CEFSK provides a signal-to-noise ratio (SNR) advantage of up to 1.2dB and 0.8dB at BER of $1{\times}10^{-4}$ when input back-off (IBO) of HPA is -1.0dB and -3.0dB, respectively. For the same channel environment with multi-channel, 1DD-CEFSK outperforms 1DD-GFSK by 1.1dB in SNR, regardless of the value of IBO.

A Study on the Treatment of Wastewater from Small-scale dyehouse (소규모 염색공장 폐수의 처리에 관한 연구)

  • 이준현;허항록;김광진;김민영;신재영
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.23-25
    • /
    • 2002
  • This study was conducted to understand characteristics of wastewater which is discharged from small-scale dyehouse located in Seoul downtown area and to Find the appliable treatment method on the spot. The results of this study were summarized as followings. 1. The method which is used at present is mostly flocculation by coagulant or fenton oxidation. But the treatment efficiency of them are not good. 2. The results of fenton oxidation experiment demonstrated that treatment efficiency of COD was limited, which showed the need of the additional process or the improvement of existing treatment method, while the color was reduced considerably in optimal condition. 3. The optimal condition of fenton oxidation are as followings. -Feasible pH was in the 3∼4 regardless of the kinds of iron ions, But the fluctuation of treatment efficiency with the change of pH was small - The mass ratio of H$_2$O/CODcr was used to evaluate the parameter of H$_2$O$_2$ The optimal range of this was in 0.7∼1,3 and it was observed that the ratio got higher as the quality got worse. -For iron ion, FeCl$_2$4H$_2$O turned out to be more effective for removal of color compared with was compared FeSO$_4$7H$_2$Oin. the mass ratio of Fe/H$_2$O$_2$ of 2.3∼2.8 for of FeSO$_4$7H$_2$O and 1.6∼1.8 for FeCl$_2$4H$_2$O resulted in good treatment efficiencies. 4. With adsorption process applied before fenton oxidation in order to treat the high concentration wastewater, the treatment efficiency increased by 61% in CODcr, 55% in color. and if the power activated carbon is injected in more than 2500mg/$\ell$, the wastewater can be treated within the effluent quality criteria.

  • PDF

Methodology of Engine Fitness Diagnosis Using Variation of Crankshaft Angular Speed (엔진 회전속도 변화를 이용한 상태진단 기법에 관한 연구)

  • Lee, Byung-Yeol;Ha, Seung-Jin;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1529-1535
    • /
    • 2011
  • Improvement of the thermal efficiency in operation and maintenance of low- and medium-speed engines is a kind of never-ending requirement in the maritime power plant business. For the purpose of improving engine management efficiency, a principal factor that represents the fitness of the engine should be identified. Gas pressure, gas temperature, and vibration have all been used as this factor. However, they have limitations in terms of response speed and diagnosis accuracy. The EFR (engine fitness ratio) is suggested as a new diagnostic factor in this paper. The EFR is defined as the ratio of particular frequencies in the frequency domain and represents the fitness of an engine. It is calculated from the fluctuation pattern of the crankshaft angular speed. The EFR was verified using an experimental method for a low-speed engine and an analytic method for a medium-speed engine.

Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis (파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해)

  • Lee, Songjune;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.

A Motion Detection Approach based on UAV Image Sequence

  • Cui, Hong-Xia;Wang, Ya-Qi;Zhang, FangFei;Li, TingTing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1224-1242
    • /
    • 2018
  • Aiming at motion analysis and compensation, it is essential to conduct motion detection with images. However, motion detection and tracking from low-altitude images obtained from an unmanned aerial system may pose many challenges due to degraded image quality caused by platform motion, image instability and illumination fluctuation. This research tackles these challenges by proposing a modified joint transform correlation algorithm which includes two preprocessing strategies. In spatial domain, a modified fuzzy edge detection method is proposed for preprocessing the input images. In frequency domain, to eliminate the disturbance of self-correlation items, the cross-correlation items are extracted from joint power spectrum output plane. The effectiveness and accuracy of the algorithm has been tested and evaluated by both simulation and real datasets in this research. The simulation experiments show that the proposed approach can derive satisfactory peaks of cross-correlation and achieve detection accuracy of displacement vectors with no more than 0.03pixel for image pairs with displacement smaller than 20pixels, when addition of image motion blurring in the range of 0~10pixel and 0.002variance of additive Gaussian noise. Moreover,this paper proposes quantitative analysis approach using tri-image pairs from real datasets and the experimental results show that detection accuracy can be achieved with sub-pixel level even if the sampling frequency can only attain 50 frames per second.

TRAO Key Science Program: mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES)

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Lee, Seokho;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Gaches, Brandt A.L.;Heyer, Mark H.;Evans, Neal J. II;Offner, Stella S.R.;Yang, Yao-Lun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2018
  • Turbulence is a phenomenon which largely determines the density and velocity fields in molecular clouds. Turbulence can produce density fluctuation which triggers a gravitational collapse, and it can also produce a non-thermal pressure against gravity. Therefore, turbulence controls the mode and tempo of star formation. However, despite many years of study, the properties of turbulence remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "apping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we have mapped two star-forming clouds, the Orion A and the ${\rho}$ Ophiuchus molecular clouds, in 3 sets of lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We aim to map entire clouds with a high-velocity resolution (~0.05 km/s) to compare turbulent properties between two different star-forming environments. We will present the preliminary results using a statistical method, Principal Component Analysis (PCA), that is a useful tool to represent turbulent power spectrum.

  • PDF

A Study on Estimation Method for Optimal Composition Rate of Hybrid ESS Using Lead-acid and Lithium-ion Batteries (연축전지와 리튬이온전지용 하이브리드 ESS의 최적구성방안에 관한 연구)

  • Park, Soo-Young;Ryu, Sang-Won;Park, Jae-Bum;Kim, Byung-Ki;Kim, Mi-Young;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.962-968
    • /
    • 2016
  • The large scaled lead-acid battery is widely used for efficient operation of the photovoltaic system in many islands. However, lithium-ion battery is now being introduced to mitigate the fluctuation of wind power and to replace lead-acid battery. Therefore, hybrid ESS(Energy Storage system) that combines lithium-ion battery with lead-acid battery is being required because lithium-ion battery is costly in present stage. Under this circumstance, this paper presents the optimal algorithm to create composition rate of hybrid ESS by considering fixed and variable costs in order to maximize advantage of each battery. With minimization of total cost including fixed and variable costs, the optimal composition rate can be calculated based on the various scenarios such as load variation, life cycle and cost trend. From simulation results, it is confirmed that the proposed algorithms are an effective tool to produce a optimal composition rate.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.