• Title/Summary/Keyword: Power factor Correction

Search Result 699, Processing Time 0.028 seconds

Performance Improvement in Single-Phase Electric Spring Control

  • Wang, Qingsong;Zuo, Wujian;Cheng, Ming;Deng, Fujin;Buja, Giuseppe
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.784-793
    • /
    • 2019
  • Two objectives can be pursued simultaneously with the ${\delta}$ control of a single-phase electric spring (ES). These objectives are the stabilization of the voltage across the critical load (CL) of a power system, and the achievement of a specific functionality similar to the pure compensation of reactive power or the correction of the power factor. However, existing control systems implementing the ${\delta}$ control do not cope with non-ideal operating conditions, such as line voltage distortions, and exhibit a somewhat sluggish regulation of the CL voltage. In an effort to improve both the steady-state and transient performances of an ES power system, this paper proposes implementing the ${\delta}$ control by means of a control system built up on the repetitive control and assisted by state feedback with pole assignment. This paper starts by analyzing the dynamics of an ES power system in terms of its poles and zeros. After that, a reduced second-order model of the dynamics is formulated to avoid a notch filter in the pole assignment. A repetitive control for an ES power system is then designed to meet the two above mentioned objectives. Experimental tests carried out on a laboratory setup demonstrate the effectiveness of the proposed control system in significantly improving the ES power system performance, while reaching the two objectives. In particular, the tests outline the large mitigation of harmonics in the CL voltage under line voltage distortions and its fast stabilization action.

An Empircal Model of Effective Path Length for Rain Attenuation Prediction (강우감쇠 유효경로 길이 예측을 위한 경험 모델)

  • 이주환;최용석;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.813-821
    • /
    • 2000
  • The engineering of satellite communication systems at frequencies above 10GHz requires a method for estimating rain-caused outage probabilities on the earth-satellite path. A procedure for predicting a rain attenuation distribution from a point rainfall rate distribution is, therefore, needed. In order to predict rain attenuation on the satellite link, several prediction models such as ITU-R, Global, SAM, DAH model, have been developed and used at a particular propagation condition, they may not be appropriate to a propagation condition in Korean territory. In this paper, a new rain attenuation prediction method appropriate to a propagation condition in Korea is introduced. Based on the results from ETRI measurements, a new method has been derived for an empirical approach with an identification on the horizontal correction factor as in current ITU-R method, and the vertical correction factor has been suggested with decreasing power law as a function of rainfall rate. This proposed model uses the entire rainfall rate distribution as input to the model, while the ITU-R and DAH model approaches only use a single 0.01% annual rainfall rate and assume that the attenuation at other probability levels can be determined from that single point distribution. This new model was compared with several world-wide prediction models. Based on the analysis, we can easily know the importance of the model choice to predict rain attenuation for a particular location in the radio communication system design.

  • PDF

The Cost-effective Eletronic ballast for Metal halide Lamp using DSP (DSP를 이용한 비용 절감형 메탈할라이드 램프용 전자식 안정기)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.108-112
    • /
    • 2017
  • High-intensity-discharge lamps are widely utilized in outdoor and indoor lighting circumstances that need high luminance. In lighting applications for MHD lamps, the size of the lamp ballast circuit is an important factor and should be as small as possible. The electronic ballast for MHD lamps is superior to the electromagnetic(EM) ballast in that it saves energy, and has smaller volume and lighter weight. In this paper, highly efficient cost-effective and small sized electronic ballast for Metal Halide Lamp with high power factor using Digital Signal Processor are proposed. The proposed electronic ballast for MHD lamps combines a boost PFC converter with a half-bridge inverter, the algorithms of the power factor correction and ballast control were implemented using the TI's TMS320LF2406 CPU. Experimental results validate the ballast is also useful and reasonably suggested.

Analysis of prediction model for solar power generation (태양광 발전을 위한 발전량 예측 모델 분석)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.243-248
    • /
    • 2014
  • Recently, solar energy is expanding to combination of computing in real time by tracking the position of the sun to estimate the angle of inclination and make up freshly correcting a part of the solar radiation. Solar power is need that reliably linked technology to power generation system renewable energy in order to efficient power production that is difficult to output predict based on the position of the sun rise. In this paper, we analysis of prediction model for solar power generation to estimate the predictive value of solar power generation in the development of real-time weather data. Photovoltaic power generation input the correction factor such as temperature, module characteristics by the solar generator module and the location of the local angle of inclination to analyze the predictive power generation algorithm for the prediction calculation to predict the final generation. In addition, the proposed model in real-time national weather service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

A Study on Harmonic Correction of Air-Conditioner Power Conversion Equipment (에어컨 전력변환장치의 고조파 개선에 관한 연구)

  • Mun, Sang-Pil;Suh, Ki-Young;Lee, Hyun-Woo;Jung, Sang-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage -doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A high input power factor of 97[%] and an efficiency of 98[%] are also obtained. The harmonic guide lines of proposed rectifier is no interfered with inverter switching, resulting in a simple, reliable and low-cost ac-to dc converters in comparison with the boost-type current-improving circuits.It compared conventional pulse-widthmodulated(PWM)inverter with half pulse-widthmodulated (HPWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switchingloss and holding over-shooting.

A Study on Step Up-Down AC-DC Converter with DCM-ZVS of High Performance (고성능 DCM-ZVS 스텝 업-다운 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • This paper is studied on a new DCM-ZVS step up-down AC-DC converter of high performance, that is, high system efficiency and power factor correction (PFC). The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit uses a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuits and reduces the number of control components. The input AC current waveform in the proposed converter becomes a quasi-sinusoidal waveform proportional to the magnitude of input AC voltage under constant switching frequency. As a result, the proposed converter obtains low switching power loss and high efficiency, and its input power factor is nearly in unity. The validity of the analytical findings is confirmed by some computer simulation results and experimental results.

3D simulation of Heat transfer in MEMS-based microchannel (MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

Comparison of Bin Averaging Method and Least Square Method for Site Calibration (단지교정을 위한 빈평균방법과 최소자승법의 비교)

  • Yoo, Neung-Soo;Nam, Yun-Su;Lee, Jeong-Wan;Lee, Myeong-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.157-164
    • /
    • 2005
  • Two methods, the bin averaging method and least square method, are often used in calibrating wind turbine test sites. The objective of this work was to determine a better method to predict the wind speed at wind turbine installing point. The calibration was done at the test site on a complex terrain located in Daegwallyeong, Korea. It was performed for two different cases based on the IEC 61400-12 power performance measurement standard. The wind speeds averaged for 10 minutes ranged between 4 m/s and 16 m/s. The wind-direction bins of each meteorological mast were 10 degrees apart, and only the bins having data measured for more than 24 hours were employed for the test site calibration. For both cases, the two methods were found to yield almost same results which estimated real wind speed very closely.

  • PDF

Phase-shedding in Boundary Conduction Mode Converter with Optimal Transition Load-level

  • Choi, Wooin;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.73-74
    • /
    • 2011
  • Phase-shedding, one famous technology for multi-phase converters, is implemented in a bi-directional multi-phase converter for ESS. It reduces active operating modules at light load to compensate efficiency. Shedding point, the load level where the converter changes the number of active modules, is important factor that affects the effect of phase-shedding. Loss analysis is done for determining shedding point. Phase-shedding hysteresis is applied so that excessive phase transition is avoided. This paper proposes shedding point correction where the shedding point is adaptively corrected by calculating a new shedding point.

  • PDF

A Unity Power Factor Electronic Ballast for Fluorescent Lamp having Improved Valley Fill and Valley Boost Converter (개선된 밸리필과 밸리용 승압형 변환기를 결합한 고역률 형광등용 전자식 안정기)

  • Youn, Yong-Sik;Chae, Gyun;Cho, Gyun-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2002-2006
    • /
    • 1997
  • A new PF correction topology, Improved Valley Fill (IVF) with Valley Boost Converter (VBC) used in the electronic ballast for fluorescent lamp is presented. The IVF can adjust the valley voltage higher than half the peak line voltage. Hence, there is no pulsating line current around the line voltage peak, PF and THD are significantly improved. The VBC is added to the IVF to achieve unity PF and to increase the valley voltage. The measured PF and THD for a prototype electronic ballast are 0.997 and 5%, respectively, and the lamp current CF is as low as 1.5

  • PDF