• Title/Summary/Keyword: Power distribution line

Search Result 812, Processing Time 0.035 seconds

ON-LINE CALCULATION OF 3-D POWER DISTRIBUTION

  • Park, Y. H.;W. K. In;Park, J. R.;Lee, C. C.;G. S. Auh
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.459-464
    • /
    • 1996
  • The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future.

  • PDF

Analysis of Electromagnetic Field Around Distribution Line (배전선로 주변에서의 전자계 분포 해석)

  • Kwon, Myung-Rak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.672-676
    • /
    • 2017
  • Electrical energy is playing an increasingly vital role as the primary energy source in everyday life. With the increase in electric power consumption, power facilities are under an increasing stress and must operate at a high capacity. Consequently, the demand for electric power cables in power transmission and distribution lines is rapidly increasing. Underground distribution lines have been steadily replacing the aboveground lines owing to the increase in electric power demand and the need to increase the supply voltage. In addition to line damage, worker safety is of primary concern in this type of underground infrastructure. In this study, to improve the safety of workers dealing with underground transmission lines, we analyzed the electromagnetic field generated around the distribution line and determined the basic criteria for developing a device that can detect a live underground line.

An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network (지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Park, Jung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

A Boundary Protection for Power Distribution Line Based on Equivalent Boundary Effect

  • Zhang, Xin;Mu, Long-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.262-270
    • /
    • 2013
  • A boundary protection method for power distribution line based on equivalent boundary effect is presented in this paper. In the proposed scheme, the equivalent resonance component with a certain central frequency is sleeve-mounted at the beginning of protected zone. The 'Line Boundary' is built by using boundary effect, which is created by introducing impedance in the primary-side of line. The 'Line Boundary' is significantly different from line wave impedance. Therefore, the boundary protection principle can be applied to power distribution line without line traps. To analyze the frequency characteristic corresponding to traveling-waves of introducing impedance in the primary-side of line, distributed parameters model of equivalent resonance component is established. The results of PSCAD/EMTDC simulation prove the obvious difference of voltage high frequency component between internal faults and external faults due to equivalent resonance component, and validate the scheme.

The Development of Distribution Planning System and Distribution Line Planning System (배전계획 시스템(DISPLAN) 및 배전계통 운영계획 시스템(DLPLAN)의 개발)

  • Chae Woo Kyu;Park Chang Ho;Jeong Jong Man;Jeong Young Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.73-75
    • /
    • 2004
  • This paper presents the ability and the application of software packages for distribution planning which are DISPLAN(Distribution Planning System) and DLPLAN(Distribution Line Planning System) developed in KEPCO. After calculating size and position of maximum load by administration section for distribution, it forecasts the demand of distribution load considering growth location, increment, new load plan, etc of load by annual. Also it calculates distribution loss, voltage drop using modeled distribution line by you, and support for establishment and enlargement plan of substation and distribution line, decision of most optimal path. And it presents the abstract of used algorithm to develop this system.

  • PDF

The Study of Multi-Circuit Breaker Coordination in the Underground Distribution Line (지중배전선로의 다회로차단기 운영방안 연구)

  • Jo, Nam-Hun;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.143-151
    • /
    • 2000
  • Electric power distribution feeders are susceptible to faults caused by a variety of situations such as adverse weather conditions, tree contacts, equipment failure, accidents, etc. Distribution circuit faults result in a number of problems related to the reliability of service and customer power quality. In the distribution line, the permanent interruption of customer service resulting from a blown fuse or a recloser lockout was the only factor which was used to determine service reliability. On underground distribution line, the serving of cables by earth-moving equipment is a prevalent cause of faults and the most cable faults quickly develop into bolted current. we introduce th multi-circuit breaker coordination methods in the Underground Distribution Line.

  • PDF

Technical Feasibility Study on Live-line Maintenance Robot System for Overhead Distribution Lines (가공 배전선로 활선 정비 로봇 시스템의 기술 타당성 검토)

  • Joon-Young, Park;Yoon-Geon, Lee;Young-Sik, Jang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.49-53
    • /
    • 2022
  • The distribution live-line work method is an operation method of working in a state in which electricity flows through overhead distribution lines to minimize inconvenience to electric customers due to power failure. In June 2016, to strengthen the safety of electrical workers, Korea Electric Power Corporation announced that it would in principle abolish the rubber glove method, in which workers wore protective equipment such as rubber gloves and performed their maintenance work. In addition, KEPCO announced that it would develop a short-range live working method using smart sticks and an advanced live-line maintenance robot system where workers work without touching wires directly. This paper is a preliminary study for the development of the live-line maintenance robot system, and deals with the results of analyzing the technical feasibility of whether the live works performed by workers can be replaced by robots or not.

The Design of Lumped Constant Circuit for the Simulation of A Real 22.9 kV-y Distribution Line (22.9 kV-y 실긍장 배전선로 모의를 위한 집중정수회로의 설계)

  • Yun, Chul-Ho;Jeong, Yeong-Ho;Han, Yong-Huei
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1186-1188
    • /
    • 1999
  • When we perform the test related to the power distribution system such as artificial fault test, protective coordination test, distribution automation test in short length test line, Lumped Constant Circuit, a kind of variable impedance, should be attached to the test line in order to make it equivalent to a real line in length electrically. In this paper we designed the positive sequence and zero sequence Lumped Constant Circuit with optimized inductor and resister for the modification of long, 16km, distribution line, when they are attached to the short, 4km, distribution test line.

  • PDF

Influence of the Interconnected Wind farm on Protection for Distribution Networks (풍력발전단지의 계통연계 운전이 배전선 보호계전에 미치는 영향)

  • 장성일;김광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.151-157
    • /
    • 2003
  • Wind farm interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with wind fm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may be difficult to detect the fault happened in the distribution network connected with wind generator This paper describes the effect of the interconnected wind turbine generators on protective relaying of distribution power lines and detection of the fault occurred in a power line network. Simulation results shows that the current level of fault happened in the power line with wind farm depends on the fault impedance, the fault location. the output of wind farm. and the load condition of distribution network.