• Title/Summary/Keyword: Power demand and supply

Search Result 622, Processing Time 0.025 seconds

Secure power demand forecasting using regression analysis on Intel SGX (회귀 분석을 이용한 Intel SGX 상의 안전한 전력 수요 예측)

  • Yoon, Yejin;Im, Jong-Hyuk;Lee, Mun-Kyu
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.7-18
    • /
    • 2017
  • Electrical energy is one of the most important energy sources in modern society. Therefore, it is very important to control the supply and demand of electric power. However, the power consumption data needed to predict power demand may include the information about the private behavior of an individual, the analysis of which may raise privacy issues. In this paper, we propose a secure power demand forecasting method where regression analyses on power consumption data are conducted in a trusted execution environment provided by Intel SGX, keeping the power usage pattern of users private. We performed experiments using various regression equations and selected an equation which has the least error rate. We show that the average error rate of the proposed method is lower than those of the previous forecasting methods with privacy protection functionality.

Characteristics of Retail Sale Activities in Depopulation Aging Regions (인구감소 고령화지역의 소매판매활동 특성)

  • Han, Ju-Seong
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.538-553
    • /
    • 2014
  • The aim of this study is to consider the degree of supply-demand balance in relation to the characteristics of retail sale activities in depopulation aging regions and the degree of aging by using simple regression analysis. The major findings of this study are as follows. While aging society, and aged society regions show a similar major retail sale industries, super-aged society shows fewer major industries and different industry composition. These characteristics are seen by different phenomenon and the background of the particular retail structure. The first one is that the number of employees per establishment increases when the aging phenomenon is not accelerated, and the annual sales per capita purchasing power decrease because their purchasing power becomes lower when the aging phenomenon is severe, but it also shows a high density of establishments because disperse location of establishment within depopulation aging region. The second one is the retail structure with high labor productivity in a aged and superaged society region. We identify the extent of demand and supply in general retails, fuel retails, food and beverage, and tobacco retails which represent the highest sales rates in depopulation aging region. As a result, general retails are seen as 'supply-demand balance region' in aged and super-aged society, fuel retail sales in aged and super-aged society which generally shows less sales, and food and beverages, and tobacco retails in super-aged society. The higher the degree of aging is, the less the regional differences in the gap between demand and supply is. This is because the difference in purchasing power between these regions is small.

  • PDF

Calculating the Optimal Capacity of Battery Storage System for Power System in Je-Ju (제주지역 전력계통에 설치되는 배터리 저장장치의 최적용량 산정)

  • Lee, Jong-Hyun;Nam, Young-Woo;Ko, Won-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.8-14
    • /
    • 2010
  • In this Paper, optimal capacity of battery storage in Je-Ju is calculated. First, Electricity demand data of Je-Ju('06~'16) is estimated based on real electricity demand data of Je-Ju('06~'07). Then, the 4th power supply planning is used to calculate benefits from battery storage capacity in view of maximum power savings, preventing outages savings and energy charge fee reduction. Finally, optimal battery storage capacity is suggested.

Economic Evaluation on a private electric Generation Application in Unelectrified Remote Islands in Korea (미 전화 도서 자가 발전방식 도입에 따른 경제성 검토)

  • Ahn, Kyo-Sang;Lim, Hee-Chun;Eom, Young-Chang
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.4
    • /
    • pp.348-358
    • /
    • 2003
  • According to Electricity Acceleration Law of Rural Area recently, the needs for replacement of a small scale diesel power generation facility which supplied electricity to 10-50 households Remote Islands has been revealed due to high operating and maintenance cost of Diesel Power Generation. Optimization of electric power system for Small Remote Islands must be made considering the economics, reliability and stability as power sources and estimation of total construction cost of those power stations. For its purpose, an assessment of power generation options such as Photovoltaic, Fuel cell, Wind-hybrid was implemented, economic evaluation of power supply shows the Photovoltaic, Fuel Cell for few household's islands and Diesel, Wind-hybrid for more inhabited islands. Power supplied by Diesel shows the best response to increasing electric demand and system reliability even with its lower economic value. Those who are in charge of power planning have to pay attention to system reliability, stability and operating characteristics of candidate's power supply besides its economics.

The Automatic Demand Response Systems Design for Electric Power Control of Home Appliances (가전기기의 전력 제어를 위한 자동 수요반응 시스템 설계)

  • Kim, Su-hong;Jung, Jin-uk;Song, Ho-jin;Hwang, Min-tae;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.228-231
    • /
    • 2015
  • Recently, the electric power consumption concentrated in specific seasons and time causes the unstable power supply. To resolve this problem, smart grid has emerged as an alternative to consume the power, efficiently. Smart grid that combines ICT with the existing electrical grid includes demand response as a core technology. Demand response enable the power consumption effectively by offering a variety of informations, such as power consumption, charges expected, etc., for consumers who voluntarily participate in the electricity markets. In this paper, we design the automatic demand response systems based on SEP 2.0 for the efficient power control of home appliances in the smart grid environments.

  • PDF

Long-term Regional Electricity Demand Forecasting (지역별 장기 전력수요 예측)

  • Kwun, Young-Han;Rhee, Chang-Mo;Jo, In-Seung;Kim, Je-Gyun;Kim, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.87-91
    • /
    • 1990
  • Regional electricity demand forecasting is among the most important step for lone-term investment and power supply planning. This study presents a regional electricity forecasting model for Korean power system. The model consists of three submodels, regional economy, regional electricity energy demand, and regional peak load submodels. A case study is presented.

  • PDF

Assessment of electricity demand at domestic level in Balochistan, Pakistan

  • Urooj, Rabail;Ahmad, Sheikh Saeed
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • Electricity is basic need for country development. But at the present time proper planning and policy is require at high pace for power generation network extension due to the increasing population growth rate. Present study aimed to analyze the present and future demand for electricity at household level in Province of Balochistan of Pakistan via simulation modeling. Data of year 2004-2005 was used as baseline data for electricity consumption to predict future demand of electricity at both rural and urban domestic level up to subsequent 30 years, with help of LEAP software. Basically three scenarios were created to run software. One scenario was Business-As-Usual and other two were green scenarios i.e., solar and wind energy scenarios. Results predicted that by using alternative energy sources, demand for electricity will be fulfill and will also reduce burden on non-renewable energy sources due to the greater potential for solar and wind energy present in Balochistan.

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.

Implementation of Grid-interactive Current Controlled Voltage Source Inverter for Power Conditioning Systems

  • Ko Sung-Hun;Shin Young-Chan;Lee Seong-Ryong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.382-391
    • /
    • 2005
  • Increasing of the nonlinear type power electronics equipment, power conditioning systems (PCS) have been researched and developed for many years in order to compensate for harmonic disturbances and reactive power. PCS's not only improve harmonic current and power factor in the ac grid line but also achieves energy saving used by the renewable energy source (RES). In this paper, the implementation of a current controlled voltage source inverter (CCVSI) using RES for PCS is presented. The basic principle and control algorithm is theoretically analyzed and the design methodology of the system is discussed. The proposed system could achieve power quality control (PQC) to reduce harmonic current and improve power factor, and demand side management (DSM) to supply active power simultaneously, which are both operated by the polarized ramp time (PRT) current control algorithm and the grid-interactive current control algorithm. A 1KVA test model of the CCVSI has been built using IGBT controlled by a digital signal processor (DSP). To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results is presented.

Development of the method for optimal water supply pump operation considering disinfection performance (소독능을 고려한 송수펌프 최적운영기법 개발)

  • Hyung, Jinseok;Kim, Kibum;Seo, Jeewon;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 2018
  • Water supply/intake pumps operation use 70~80% of power costs in water treatment plants. In the water treatment plant, seasonal and hourly differential electricity rates are applied, so proper pump scheduling can yield power cost savings. Accordingly, the purpose of this study was to develop an optimal water supply pump scheduling scheme. An optimal operation method of water supply pumps by using genetic algorithm was developed. Also, a method to minimize power cost for water supply pump operation based on pump performance derived from the thermodynamic pump efficiency measurement method was proposed. Water level constraints to provide sufficient disinfection performance in a clearwell and reservoirs were calibrated. In addition, continuous operation time constraints were calibrated to prevent frequent pump switching. As a result of optimization, savings ratios during 7 days in winter and summer were 4.5% and 5.1%, respectively. In this study, the method for optimal water pump operation was developed to secure disinfection performance in the clearwell and to save power cost. It is expected that it will be used as a more advanced optimal water pump operation method through further studies such as water demand forecasting and efficiency according to pump combination.