• Title/Summary/Keyword: Power converter

Search Result 6,241, Processing Time 0.029 seconds

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

High Efficiency Voltage Balancing Dual Active Bridge Converter for the Bipolar DC Distribution System (양극성 DC 배전 시스템을 위한 고효율 전압 밸런싱 듀얼 액티브 브리지 컨버터)

  • Lee, Minsu;Cheon, Sungmoon;Choi, Dongmin;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.391-396
    • /
    • 2022
  • In this study, a new voltage-balancing dual-active bridge converter that integrates a DAB converter with a voltage balancer is proposed for a bipolar DC distribution system. The proposed converter is configured to connect two loads to the transformer secondary center tap of the DAB converter, and no additional components are added. The proposed converter has the same operation as the conventional DAB converter, and it makes both output voltages similar. Moreover, the imbalanced current offset between the two loads is bypassed only on the secondary side of the transformer. Consequently, the proposed converter integrates a voltage balancer without any additional components, and no additional loss occurs in the corresponding components. Thus, high efficiency and high power density can be achieved. The feasibility of the proposed converter is verified using 3 kW prototypes under 380 V input and 190/190 V output conditions.

Digital Control of an AC/DC Converter using the Power Balance Control Technique with Average Output Voltage Measurement

  • Wisutmetheekorn, Pisit;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2012
  • This paper presents a method for the digital control of a high power factor AC/DC converter employing the power balance control technique to achieve a fast response of the output voltage control. To avoid the effects of an output voltage ripple in the voltage control loop, the average output voltage is sampled and used as a feedback signal for the output voltage controller. The proposed control technique was verified by simulations using MATLAB/Simulink and its implementation was realized by a dsPIC30F4011 digital signal processor to control a CUK topology AC/DC converter with a 48V output voltage and a 250 W output power. The experimental results agree with the simulation results. The proposed control technique achieves a fast transient response with a lower line current distortion than is achieved when using a conventional proportional-integral controller and the power balance control technique with the conventional sampling method.

Static Characteristics Analysis of PWM Cuk AC-AC Converter for Power Quality Improvement of Custom Power (Custom Power의 전력품질 향상을 위한 PWM Cuk AC-AC 컨버터의 정적 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.513-516
    • /
    • 2004
  • In this paper, a PWM Cuk AC-AC converter for power quality improvement of custom power is presented. The PWM Cuk AC-AC converter that is used in VVCF applications such as AC line conditioner, phase shifter is modelled by using complex circuit DQ transformation whereby the static characteristics equations such as voltage gain and power factor is analytically obtained. Finally, the PSIM simulation show the validity of the modelling and analysis.

  • PDF

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

Power Loss Analysis of EV Fast Charger with Wide Charging Voltage Range for High Efficiency Operation (넓은 충전 범위를 갖는 전기 자동차용 급속 충전기의 고효율 운전을 위한 손실 분석)

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1055-1063
    • /
    • 2014
  • Power losses of a 1-stage DC-DC converter and 2-stage DC-DC converter are compared in this paper. A phase-shift full-bridge DC-DC converter is considered as 1-stage topology. This topology has disadvantages in the stress of rectifier diodes because of the resonance between the leakage inductor of the transformer and the junction capacitor of the rectifier diode. 2-stage topology is composed of an LLC resonant full-bridge DC-DC converter and buck converter. The LLC resonant full-bridge DC-DC converter does not need an RC snubber circuit of the rectifier diode. However, there is the drawback that the switching loss of the buck converter is large due to the hard switching operation. To reduce the switching loss of the buck converter, SiC MOSFET is used. This paper analyzes and compares power losses of two topologies considering temperature condition. The validity of the power loss analysis and calculation is verified by a PSIM simulation model.

Comparison and Analysis of Boost Converter Topologies for the DC/DC Converter in Hydrogen Fuel Cell Hybrid Railway Vehicle (수소연료전지 하이브리드 철도차량용 DC/DC 컨버터를 위한 부스트 컨버터 토폴로지 비교 및 분석)

  • Kang, Dong-Hun;Lee, Il-Oun;Lee, Woo-Seok;Yun, Duk-Hyeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.269-278
    • /
    • 2020
  • In this paper, two types of DC/DC converters in a hydrogen fuel cell hybrid railway vehicle system, which serve to charge high-voltage battery and supply power to an inverter for driving a driving motor, were compared and analyzed. A two-level interleaving boost converter and a three-level boost converter were compared and analyzed, and a theoretical design method was proposed to have an efficiency characteristic of over 95%. In addition, a digital controller design method considering the digital phase delay component of DSP (TMS320F28335) is presented. Finally, the validity of the theoretical design of the converter with 20kW power was verified through static and dynamic experiments respectively.

Analysis, Design, and Implementation of a Zero-Voltage-Transition Interleaved Boost Converter

  • Ting, Naim Suleyman;Sahin, Yakup;Aksoy, Ismail
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.41-55
    • /
    • 2017
  • This study proposes a novel zero voltage transition (ZVT) pulse width modulation (PWM) DC-DC interleaved boost converter with an active snubber cell. All the semiconductor devices in the converter turn on and off with soft switching to reduce the switching power losses and improve the overall efficiency. Through the interleaved approach, the current stresses of the main devices and the ripple of the output voltage and input current are reduced. The main switches turn on with ZVT and turn off with zero voltage switching (ZVS). The auxiliary switch turns on with zero current switching (ZCS) and turns off with ZVS. In addition, the snubber cell does not create additional current or voltage stress on the main switches and main diodes. The proposed converter can smoothly achieve soft switching characteristics even under light load conditions. The theoretical analysis and operating stages of the proposed converter are made for the D > 50% and D < 50% modes. Finally, a prototype of the proposed converter is implemented, and the experimental results are given in detail for 500 W and 50 kHz. The overall efficiency of the proposed converter reached 95.5% at nominal output power.

Capacitor Bank Assisted Battery Fed Boost Converter for Self-electricity-generated Transportation Cart System (자가발전 이동 카트 시스템을 위한 배터리 - 캐패시터 뱅크를 갖는 부스트 컨버터)

  • Kong, Sung-Jae;Yang, Tae-Cheol;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A problem exists in the conventional transportation cart applications, in which an external power supply with mechanical contact connection (bus bar connection) is required to drive the motor. Therefore, continuous effort for maintenance is required, aside from the expensive bus bar connector. To solve this problem, a self-electricity-generated transportation cart system without bus bar has recently been introduced. In this system, a battery needs to store the power of the generated wheel, and a boost converter, which converts the low battery voltage to high bus voltage to drive the motor inverter, is necessary. However, since the instantaneous large current required for starting the motor is supplied from the battery, a battery with large size and volume should be adopted to withstand this large current. In this study, a boost converter that can supply a large instantaneous current by using super Capacitor string is proposed. The proposed converter can be realized with a small size and volume compared with the conventional battery-fed boost converter. Operational principles, analysis, and design of the proposed converter are presented, and experimental results are provided to validate the proposed converter.