• Title/Summary/Keyword: Power control algorithm

Search Result 2,719, Processing Time 0.031 seconds

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

An Accelerometer-Assisted Power Management for Wearable Sensor Systems

  • Lee, Woosik;Lee, Byoung-Dai;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.318-330
    • /
    • 2015
  • In wearable sensor systems (WSSs), sensor nodes are deployed around human body parts such as the arms, the legs, the stomach, and the back. These sensors have limited lifetimes because they are battery-operated. Thus, transmission power control (TPC) is needed to save the energy of sensor nodes. The TPC should control the transmission power level (TPL) of sensor nodes based on current channel conditions. However, previous TPC algorithms did not precisely estimate the channel conditions. Therefore, we propose a new TPC algorithm that uses an accelerometer to directly measure the current channel condition. Based on the directly measured channel condition, the proposed algorithm adaptively adjusts the transmission interval of control packets for updating TPL. The proposed algorithm is efficient because the power consumption of the accelerometer is much lower than that of control packet transmissions. To evaluate the effectiveness of our approach, we implemented the proposed algorithm in real sensor devices and compared its performance against diverse TPC algorithms. Through the experimental results, we proved that the proposed TPC algorithm outperformed other TPC algorithms in all channel environments.

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

D2D Power Control in the Cellular System: Iterative Algorithm and Convergence

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.41-47
    • /
    • 2017
  • In this paper, we consider the case where D2D users and the cellular user share the uplink of the cellular system. We propose an iterative power control algorithm that converges to the optimum power value. Each user iteratively updates its transmit power level according to the interference function. Finally, all D2D users and cellular user that participate in the transmission get the optimum transmit power level. We first investigate the interference structure and define the interference function. Then, we show that the considered interference function belongs to the standard interference function that converges the unique transmit power level. Through numerical examples, the convergence of the proposed power control algorithm is examined in the various transmission scenarios.

Transmission Power Control using FACTS Device (FCATS Device를 이용한 송전전력 제어)

  • Park, Seung-Ho;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.152-154
    • /
    • 2006
  • This paper presents an electric power control scheme in the transmission line using a UPFC(Unified Power Flow Controller). From the practical application viewpoint, the simultaneous realization of the power response desired. The author propose a new power control algorithm for UPFC. To verify the effectiveness of the proposed algorithm, a protype inverter is built and some experiments are carried out.

  • PDF

Optimized Power Control for CDMA System under Fast Channel Variance (빠른 채널 변화를 수반하는 CDMA 환경에서의 최적 전력 제어)

  • Kim, Hyung-Suck;Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.246-248
    • /
    • 2004
  • In this paper, we propose an optimal power control algorithm for CDMA cellular systems. The proposed power control algorithm is based on linear quadratic control theory. As the cellular system includes the changeability of system environment or various noise, Kalman filter is adapted to estimate the time-varying interference. This is the well-known linear quadratic Gaussian (LQG) theory. Through this algorithm, power transmission of each mobile with optimal one is more realistic. Simulation results show a fast convergence rate to optimal power value, and a rapid decreasing outage probability.

  • PDF

Evaluation of Power Flow Control Strategy and DC-link Voltage Regulation for DC Microgrid

  • Nguyen, Thanh Van;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.416-417
    • /
    • 2019
  • In this paper, an effective power flow control strategy (PFCS) based on the centralized control approach and a DC-link (DCV) restoration algorithm for DC microgrid (DCMG) are presented. By investigating the statuses of system power units, eleven operating modes are given to ensure the system power balance under various conditions. To avoid the system power imbalance caused by the delay of grid fault detection, a reliable DCV restoration algorithm is proposed. In the proposed scheme, when an abnormal variation of the DCV is detected, the battery instantly starts a local emergency control mode to restore the DCV to the nominal value regardless of the control mode from the central controller. The simulations and experiments are carried out to prove the effectiveness of the PFCS and the proposed DCV restoration algorithm.

  • PDF

Smart Dimming Control Algorithm for Reducing Power Consumption of LED TV Backlight (LED TV 백라이트 소비전력 저감을 위한 스마트 디밍 알고리즘 개발)

  • Ryu, Je-Seung;Park, Ju-Hee;Lim, Seong-Ho;Kim, Tae-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.320-326
    • /
    • 2014
  • In this paper, the new smart dimming algorithm which is mixed with PWM and PAM control method is proposed for reducing the power consumption of LED TV Backlight. The proposed technique is using the curve characteristics of LED forward voltage and current which is proportionally changing LED forward voltage as changing LED forward current. Therefore, each PWM and PAM control method has different LED forward voltage and current in the same brightness condition. The PWM control method adjusts the brightness of LED TV Backlight by only varying the duty ratio of PWM and constantly sustaining the amplitude of LED forward current and voltage. So, the level of LED forward current and voltage in the PWM control method is relatively high and constant regardless of duty ratio of PWM. On the other hand, the PAM control method adjusts the brightness of LED TV Backlight by directly varying the level of LED forward current. So, the level of LED forward current and voltage in the PAM control method is lowered according to the brightness level. For the above-mentioned reason, the PAM control method has the advantage of reducing the total power consumption of LED TV Backlight at the brightness condition of below 100%, compared with PWM control method. By implementing this characteristic to LED driver circuit with control algorithm in MCU, the power consumption of LED TV Backlight can expect to be reduced. The effectiveness of the proposed method, new smart dimming algorithm, CPWAM(=Conditional Pulse Width Amplitude Modulation), has been verified by experimental results.

Predictive Direct Torque Control Algorithm for Induction Motors and its Digital Implementation

  • Mutschler, Peter;Flach, Erich
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1-6
    • /
    • 1998
  • To achieve fast control action, direct control methods should be used. "Direct Mean Torque Control" (DMTC) combines the good dynamic performance of Direct Torque Control (DTC) with the advantages of inherently constant switching frequency and time equidistant control for implementation in a digital signal processor. Since DMTC is a predictive control algorithm, the model and its correction deserves special investigations. This paper proposes a steady-state Kalman filter which is well suited for fast computation.mputation.

  • PDF

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.