• 제목/요약/키워드: Power control Efficiency

검색결과 2,464건 처리시간 0.027초

태양광발전시스템과 계통간의 전력 전송 효율 개선을 위한 최대효율점 추적 제어 알고리즘 (Maximum Efficiency Point Tracking Control Algorithm for Improving Electric Power Transmission Efficiency between Photovoltaic Power Generating system and the Grid)

  • 권철순;김광수;도태용;박성준;강필순
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.342-348
    • /
    • 2013
  • It proposes an efficient control algorithm to increase electric power transmission efficiency between photovoltaic power generating system and the grid. The main controller finds a maximum efficiency condition by considering the quantity of power generated from PV arrays, the number of inverters, and efficiency of PV inverter. According to the condition, a relay board arranges a point of contract of PV arrays. By the disposition of PV arrays, it assigns the optimized power on each PV inverter. Operational principle of the proposed maximum efficiency point tracking algorithm is given in detail. To verify the validity of the proposed approach, computer-aided simulation and experiment carried out.

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발 (Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

무선전력전송용 게이트 및 드레인 조절 회로를 이용한 고이득 고효율 전력증폭기 (High gain and High Efficiency Power Amplifier Using Controlling Gate and Drain Bias Circuit for WPT)

  • 이성제;서철헌
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.52-56
    • /
    • 2014
  • 본 논문은 고효율 전력증폭기는 무선전력전송을 위한 게이트와 드레인 바이어스 조절 회로를 사용하여 설계하였다. 이 조절 회로는 PAE (Power Added Efficiency)를 개선하기 위해 사용되었다. 게이트와 드레인 바이어스 조절 회로는 directional coupler, power detector, and operational amplifier로 구성되어있다. 구동증폭기를 사용하여 고이득 2단 증폭기는 전력증폭기의 낮은 입력단에 사용되었다. 게이트와 드레인 바이어스 조절회로를 사용하여 제안된 전력증폭기는 낮은 전력에서 높은 효율성을 가질 수 있다. PAE는 80.5%까지 향상되었고 출력전력은 40.17dBm이다.

MPPT제어 알고리즘 고찰 및 효율시험 평가법 (A Study on the MPPT Control Algorithm and Efficiency Evaluation Method)

  • 유권종;김기현;정영석;김영석
    • 전력전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.164-172
    • /
    • 2001
  • 본 논문에서는 대표적인 MPPT(Maximum Power Point Tracking)제어 알고리즘인 일정전압제어, P&O(Perturbation and Observation)제어, IncCond(Incremental Conductance)제어에 대하여 서술하고, 그 효율성을 검토해 보았다. 이를 위하여 시뮬레이션 및 효율시험을 통하여 정상상태 및 과도상태에 대한 각 알고리즘별 특성 및 효율을 분석하였다. 또한, MPPT 제어의 고효율화를 위하여 기존의 제어 알고리즘을 개선한 Two-Mode 제어법을 제안하였으며, MPPT 효율측정을 위한 회로구성 및 측정 방법을 제시하였다.

  • PDF

Vector Control of Induction Motors using Optimal Efficiency Control

  • Kim, Sang-uk;Chi, Jin-ho;Kim, Young-seok
    • Journal of Power Electronics
    • /
    • 제2권1호
    • /
    • pp.67-75
    • /
    • 2002
  • This paper presents the control algorithm for maximum efficiency drives of an induction motor system with the high dynamic performance. This system uses a simple model of the induction motor that includes equations of the iron losses. The model, which only requires the parameters of the induction motor, is referred to a field-oriented frame. The minimum point of the input power can be obtained at the steady state condition. The proposed optimal efficiency control algorithm calculates the reference torque and flux currents for the vector control of the induction motors. A 32 bit floating point TMS320C32 DSP chip implements the drive system with the efficiency optimization controller. The results show the effectiveness of the control strategy Proposed for the induction motor drive.

A Power Control Scheme of a Fuel Cell Hybrid Power Source

  • 송유진;한수빈;박석인;정학근;정봉만;김규덕;유승원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.183-187
    • /
    • 2008
  • This paper describes a power control scheme to improve the performance of a fuel cell battery hybrid power source for residential application. The proposed power control scheme includes a power control strategy to control the power flow of the fuel cell hybrid power system and a digital control technique for a front-end dc-dc converter of the fuel cell. The power control strategy enables the fuel cell to operate within the high efficiency region defined by the polarization curve and efficiency curve of the fuel cell. A dual boost converter with digital control is applied as a front-end dc-dc converter to control the fuel cell output power. The digital control technique of the converter employs a moving-average digital filter into its voltage feedback loop to cancel the low frequency harmonic current drawn from the fuel cell and then limits the fuel cell output current to a current limit using a predictive current limiter to keep the fuel cell operation within the high efficiency region as well as to minimize the fuel cell oxygen starvation.

  • PDF

고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터 (A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter)

  • 문상철;정봉근;구관본
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

Power Closed-loop Control of Switched Reluctance Generator for High Efficiency Operation

  • Li, Zhenguo;Gao, Dongdong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.397-403
    • /
    • 2012
  • This paper describes a control method of turn-on/off angles to improve the efficiency of the switched reluctance generator(SRG) with a power closed-loop control system, and the inner-loop of the system is current hysteresis control. The SRG control system is constituted by the PI power controller and the two-level current hysteresis controller. By measuring and analyzing the system losses of different reference powers, speeds and turn-on/off angles, selection strategy of optimal turn-on/off angles is discussed. The proposed method is simple, reliable, and easy to achieve.

Efficiency Improvement of Synchronous Boost Converter with Dead Time Control for Fuel Cell-Battery Hybrid System

  • Kim, Do-Yun;Won, Il-Kuen;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1891-1901
    • /
    • 2017
  • In this paper, optimal control of the fuel cell and design of a high-efficiency power converter is implemented to build a high-priced fuel cell system with minimum capacity. Conventional power converter devices use a non-isolated boost converter for high efficiency while the battery is charged, and reduce its conduction loss by using MOSFETs instead of diodes. However, the efficiency of the boost converter decreases, since overshoot occurs because there is a moment when the body diode of the MOSFET is conducted during the dead time and huge loss occurs when the dead time for the maximum-power-flowing state is used in the low-power-flowing state. The method proposed in this paper is to adjust the dead time of boost and rectifier switches by predicting the power flow to meet the maximum efficiency in every load condition. After analyzing parasite components, the stability and efficiency of the high-efficiency boost converter is improved by predictive compensation of the delay component of each part, and it is proven by simulation and experience. The variation in switching delay times of each switch of the full-bridge converter is compensated by falling time compensation, a control method of PWM, and it is also proven by simulation and experience.