• 제목/요약/키워드: Power conditioning system

검색결과 814건 처리시간 0.037초

Kalina 사이클의 효율 향상 방안 및 성능 비교 (Improvement of Efficiency of Kalina Cycle and Performance Comparison)

  • 윤정인;손창효;최광환;손창민;설성훈;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.11-19
    • /
    • 2015
  • In this paper, EP-Kalina cycle applying liquid-vapor ejector and motive pump is newly proposed. In this EP-Kalina cycle, the liquid-vapor ejector is used to increase pressure difference between inlet and outlet of the turbine. Also the motive pump enhances the performance of liquid-vapor ejector, resulting in increase of system efficiency of OTEC cycles. The comparison cycles in this study are basic, Kalina, EKalina and EP-Kalina ones. The pump work, net power, APRe, APRc, TPP and system efficiency of each cycle are compared. In case of net power, EP-Kalina cycle is lowest among the cycles due to the application of the motive pump. But, the net power difference of cycles seems to be minor since the pump work of cycles is merely about 1kW, compared to turbine gross power of 20kW. The system efficiency of EP-Kalina cycle shows 3.22%, relatively 44% higher than that of basic OTEC cycle. Therefore, the system efficiency is increased by applying the liquid-vapor ejector and the motive pump. Additional performance analysis is necessary to optimize the proposed EP-Kalina cycle.

화력발전소 폐열에 따른 작동유체별 액-증기 이젝터를 적용한 1MW급 ORC의 성능 분석 (Performance Analysis of 1MW Organic Rankine Cycle with Liquid-Vapor Ejector using Effluent from Power Plant)

  • 김현욱;윤정인;손창효
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.120-125
    • /
    • 2014
  • In this paper, suitable working fluid of 1MW Organic Rankine Cycle(ORC) with liquid-vapor ejector using effluent from power plant is selected. The results of comparison performance of 5 refrigerants are as follows; R600a, R134a, R1270, R236fa, R235fa. The operating parameters considered in this study include the condensation capacity evaporation capacity and efficiency. As a result of comparison of basic ORC system and with liquid-vapor ejector, with ORC system presents the higher system efficiency since the ejector makes the turbine outlet pressure lower than condensation pressure through its pressure recovery. Also, this ejector ORC system is advantageous in miniaturizing the size of components owing to decrease of evaporation capacity and condensation capacity.

소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션 (Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System)

  • 조우진;이관수;김인규
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

저전력 무선센서 네트워크를 이용한 빌딩 내 환경공조 시스템 (Indoor Air-Conditioning System in building Using Lower Power Wireless Sensor Network)

  • 이승철;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.397-400
    • /
    • 2007
  • 본 연구에서는 소형, 저전력 센서와 센서 인터페이스를 구현하여 빌딩내의 실내 공조시스템과 함께 연동하고자 하였다. 빌딩 내 공조시스템은 저비용인 저전력 무선센서 노드간의 네트워크를 형성하여 각 룸마다 오염농도를 분석하여 룸의 오염 상태를 확인 한 후 실내 공조시스템에 있는 팬을 자동으로 조절해서 최적의 환경을 조성할 수 있게 하였다. 또한 GUI 인터페이스를 통해 각 룸의 있는 센서노드의 배터리 상태를 확인할 수 있는 것은 물론 모니터링이 필요한 가스의 농도와 온도 등을 확인 할 수도 있었다. 본 논문에서는 IEEE 802.15.4와 Zigbee를 지원하는 근거리 통신망을 갖는 저전력 무선센서 노드를 이용하여 무선센서 네트워크를 형성하기 위해 Ad-hoc 기능을 갖는 Simple forwarding routing을 구현하였다. 그리고 가스센서의 전력소모를 줄이기 위해서 전기화학적으로 환원 또는 산화하여 외부회로에 흐르는 전류를 측정하는 저전력 전기화학식 가스센서를 사용하였으며, 가스센서 인터페이스를 저전력으로 동작하도록 설계하였다.

  • PDF

Design and Control of Novel Topology for Photovoltaic DC/DC Converter with High Efficiency under Wide Load Ranges

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.300-307
    • /
    • 2009
  • In this paper, design and control is proposed for a four input-series-output-series-connected ZVS full bridge converter for the photovoltaic power conditioning system (PCS). The novel topology for a photovoltaic (PV) DC/DC converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing PV module characteristics is proposed. The control scheme, including an input voltage controller is proposed to achieve equal sharing of the input voltage as well output voltages by a four series connected module. Design methods for ZVS power stage are also introduced. The total PV system is implemented for a 250-kW PV power conditioning system (PCS). This system has only three DC/DC converters with a 25-kW power rating and uses only one-third of the total PV PCS power. The 25-kW prototype PV DC/DC converter is introduced to verify experimentally the proposed topology. In addition, an experimental result shows that the proposed topology exhibits good performance.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

싸이리스터 PWM 컨버터를 이용한 초전도자기에너지저장장치의 전력변환기 (Power Conditioning System for SMES Using Thyristor PWM Converter)

  • 한병문;백승택;이경빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1061-1063
    • /
    • 2001
  • This paper proposes a new power conditioning system for the SMES composed of a thyristor PWM converter with a resonant commutation circuit. The operation of the proposed system and the dynamic interaction between SMES and the power system is analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with EMTP, considering a typical 154kV power system. The proposed system can provide a solution for the power factor regulation and harmonic level reduction in the ac terminal with low-cost system configuration.

  • PDF

싸이리스터 PWM 컨버터를 이용한 초전도자기에너지저장장치의 전력변환기 (Power Conditioning System for SMES Using Thyristor PWM Converter)

  • 한병문
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권6호
    • /
    • pp.293-299
    • /
    • 2001
  • This paper proposes a new power conditioning system for the SMES composed of a thyristor PWM converter with a resonant commutation circuit. The operation of the proposed system and the dynamic interaction between SMES and the power system is analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with EMTP, considering a typical 154kV power system. The proposed system can provide a solution for the power factor regulation and harmonic level reduction in the ac terminal with low-cost system configuration.

  • PDF

디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발 (Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter)

  • 주영아;차민영;한병문;강태섭;차한주
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.