• 제목/요약/키워드: Power compensator

검색결과 609건 처리시간 0.034초

전력계통의 전압안정도 향상을 위한 변전소의 무효전력 제어 연구 (A Study of Reactive power control for voltage stability enhancement in power system)

  • 이현철;박지호;정태영;정기석;이상덕;유형선;백영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.191-192
    • /
    • 2011
  • The transmission capacity has been highlighted as a problem in the power company according to operated heavy loaded of transmission facility. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and many approaches for enhancement of the total transfer capability has been consistently performed. This paper proposes a study on determination of the adequate var sizing of power compensator regarding the transfer capability enhancement in power system. This method was controlled power compensator in substation becasue of the voltage stability. It was simulated power system using EMS peak data.

  • PDF

농형유도 풍력발전기의 성능개선을 위한 에너지 저장장치의 동작특성 분석 (Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator)

  • 심명보;한병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1045_1046
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

  • PDF

한전계통의 전압안정도 향상 및 과부하 해소를 위한 80MVA UPFC(Unified Power Flow Controller) 설치 (Installation of 80MVA UPFC(Unified Power Flow Controller) for improving voltage stability and reducing heavy load in KEPCO power systems)

  • 오관일;장병훈;전영수;박상태;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.262-265
    • /
    • 2001
  • 최근 전력계통의 과부하, 전압안정도 등의 문제에 대한 해결책으로 FACTS (Flexible AC Transmission Systems)가 대두되고 있다. FACTS 설비에는 TCSC (Thyristor-Controlled Series Capacitor), SSSC (Static Synchronous Series Capacitor)와 같은 직렬 기기와 SVC(Static Var Compensator), STATCOM(STATic COMpensator) 와 같은 병렬기기 그리고, 본 논문에서 다루는 UPFC와 같은 직 병렬기기로 나누어진다. UPFC는 SSSC와 STATCOM을 결합한 형태로 유 무효전력을 동시에 보상할 수 있는 FACTS 기기이다. 본 논문에서는 한전 계통의 전압안정도 향상과 과부하 해소를 위해 강진S/S에 설치예정인 80MVA UPFC의 하드웨어 특성과 주변계통의 특성을 소개하고, UPFC와 한전 계통의 연계방안과 시험방안을 설명한다.

  • PDF

다단자망 알고리즘을 이용한 급전시스템의 무효전력 보상 모델링 및 시뮬레이션 (Modeling and Simulation Reactive Power Compensator using Multi-port Network Algorithm in Electrified Railway)

  • 김주락
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.883-887
    • /
    • 2016
  • The power supply system in Korean electrified railway has adopted AT feeding. If a fault occurs in some substation for any reason, the vicinity substation must feed electric power on the outage substation through catenary. So, the feeding distance grows twice of the normal state at extended feeding condition. If substation's feeding distance is longer than normal condition, the catenary impedance and train to supply electric power from the substation. Therefore, the severe voltage drop can occur and power supply shall be not allowed. This paper presents the model of compensator against voltage drop using multi-port network algorithm. Whole traction power supply system can be analyzed with this model. Computer simulation including this model is performed based on real train schedule and increased schedule in case studies.

농형유도 풍력발전시스템을 위한 유.무효전력보상장치 (Active and Reactive Power Compensator for Wind Power System with Squirrel-Cage Induction Generator)

  • 양승철;주영아;한병문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.48-50
    • /
    • 2008
  • A wind power system with squirrel-cage induction generator has irregular change of output power according to the sudden change of wind speed. This paper describes the development of a active and reactive power compensator, which is composed of a 3-phase inverter and a bidirectional DC/DC converter with super-capacitor. The operational characteristic was analyzed through simulations with PSCAD/EMTDC and experimental works with a scaled model. The developed system can continuously compensate the active power change with energy storage and the reactive power change with 3-phase inverter.

  • PDF

3상 PWM 인버터를 이용한 순간전압보상기의 해석 (Analysis of Instantaneous Voltage Compensator Using 3-Phase PWM Inverter)

  • 최연규;이승요;최규하;목형수;함형원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.222-227
    • /
    • 1997
  • Unbalanced source voltages due to unbalanced loads in the 3-phase power system is decomposed into positive, negative and zero sequence components. Also, assuming there is no neutural path in the system, the zero sequence component is not shown. Therefore, it is possible to compensate unbalanced source voltage by canceling the negative sequency component of the voltages of the source. In this paper, an algorithm compensating unbalanced source voltages by canceling the negative sequence component is presented and analysis of instantaneous voltage compensator using 3-phase PWM inverter is carried out through computer simulation.

  • PDF

비선형 부하를 고려한 배전용 정지형 보상기의 전류제어 기법 (Current Control Method of Distribution Static Compensator Considering Non-Linear Loads)

  • 김동근;최종우;김흥근
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1342-1348
    • /
    • 2009
  • DSTATCOM(distribution static compensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Researches about DSTATCOM are mainly divided two parts, one is the calculation of compensated current and the other part is the current control. This paper proposes a proportional-resonant-repetitive current controller. Improved performance of instantaneous power compensation has been shown by simulations and experiments.

전류형 PWN 콘버어터의 희한 정지형 무효전력 보상장치에 관한연구 (Static Var Compensator Using Current Source PWM Converter)

  • 김철우;권순재;김광태
    • 대한전기학회논문지
    • /
    • 제39권11호
    • /
    • pp.1183-1190
    • /
    • 1990
  • In this paper, instantaneous reactive power compensation algorithm is proposed and analyzed. The static Var generator developed in this paper is the current source PWM converter using hysteresis comparator method, which compensates the reactive power by detecting each instantaneous phase voltage and line current, independently. Some aspects on the static Var compensator-such as inductance, capacitance, hysteresis width, and switching frequency, etc.-are discussed. The dynamic performances are examined through digital simulation and experimental test.

  • PDF

SVC를 이용한 Highly varying 부하에 의한 영향 보상 방안 (Compensation of the Impact of Highly Varying Loads on Power Systems Using SVCs)

  • 정문구;장길수;이병준;손광명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.380-382
    • /
    • 2001
  • This paper deals with the compensation of the impact of highly varying loads on the power system using a static var compensator (SVC). A procedure to determine a suitable capacity of the compensator is proposed, and it is implemented using PSCAD/EMTDC. The proposed method is applied to a test system to illustrate its capabilities.

  • PDF

멀티레벨 인버터를 사용한 대용량 무효전력 보상기 (Large Scale Var Compensator Using Multilevel Inverter)

  • 최남섭;유효열;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.767-769
    • /
    • 1993
  • A multilevel PWM voltage source inverter, especially five-level one, is introduced to obtain a static var compensator(SVC) as a large scale power, source. In this paper, the three phase SVC is modeled using circuit DQ transformation and completely analyzed. Finally, through the experimental results from 5-kVA SVC, the validity of the analyses and the feasibility of the SVC system are shown for high power applications.

  • PDF