• 제목/요약/키워드: Power clean

검색결과 706건 처리시간 0.028초

태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구 (A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation)

  • 최회균
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계 (Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation)

  • 잡반티엔;이영덕;김영상;쿠엔;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

비압축성 유동해석에 기초한 대면적 표면처리용 브라스팅 노즐 설계 및 실험적 검증 (Design and Experimental Verification of Blasting Nozzle for Wide Area Surface Treatment based on Incompressible Flow Analysis)

  • 김태형;곽준구;이세창;이상규;이승호
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.49-56
    • /
    • 2019
  • 본 연구에서는 발전소에서 사용되는 부품의 넓은 표면을 세정하기 위한 브라스팅 노즐을 비압축성 유동해석에 기초하여 설계하였다. 설계된 노즐의 출구측 단면은 광폭의 직선 모양이다. 설계 후 3차원 프린팅으로 노즐 시제품을 제작하였고 이를 브라스팅 머신에 장착 후 세정 성능실험을 수행하였다. 해석 후 얻은 광폭 크기와 실험 후 시편 표면에서 얻은 세정된 광폭 크기가 거의 같았다. 이로부터 대면적 표면처리를 위한 브라스팅 노즐의 설계가 유효함을 확인하였다.

3D 프린팅 공정을 이용한 고체 산화물 연료전지 연구 동향 (Recent Activities of Solid Oxide Fuel Cell Research in the 3D Printing Processes)

  • 주바이르 마사우드;무하마드 주바이르 칸;암자드 후세인;하피즈 아흐마드 이시팍;송락현;이승복;조동우;임탁형
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.11-40
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) has received significant attention recently because of its potential for the clean and efficient power generation. The current manufacturing processes for the SOFC components are somehow complex and expensive, therefore, new and innovative techniques are necessary to provide a great deal of cell performance and fabricability. Three-dimensional (3D) printing processes have the potential to provide a solution to all these problems. This study reviews the literature for manufacturing the SOFC components using 3D printing processes. The technical aspects for fabrication of SOFC components, 3D printing processes optimization and material characterizations are discussed. Comparison of the SOFC components fabricated by 3D printing to those manufactured by conventional ceramic processes is highlighted. Further advancements in the 3D printing of the SOFC components can be a step closer to the cost reduction and commercialization of this technology.

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

역도 인상, 용상 기록향상과 관계가 높은 주요 훈련종목 추출 (Extraction of Major Training Method that are Highly Related to Snatch Record and Jerk Record Improvement)

  • Moon, Young Jin;Park, Tae Min
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.148-153
    • /
    • 2021
  • Objective: It is to extract training items that have a high relationship with the improvement of weightlifting records through correlation and regression analysis between training methods used commonly in the field and Snatch records and jerk records. Through this, it is intended to promote training efficiency to improve the records of weightlifters. Method: For 90 elite weightlifters of the professional teams, 4 groups (lightweight (30 people): 61 kg, 67 kg, 73 kg., middleweight (30 people): 81 kg, 89 kg, 96 kg., heavyweight (30 people): 102 kg, 109 kg, +109 kg., the whole group (90 people)) were divided. At the significance level of 0.05, correlation analysis and linear regression analysis were performed between record of training methods used widely in the field and Snatch records and Jerk records. Results: First, the better the record in Jerk, the better the Snatch record. Second, the three training methods HS, ForceS and WP performed in the field were all found to be important factors related to the improvement of Snatch record. Third, In the jerk where there are more types of training than Snatch, three training methods (HC, ForceS, BPP) appeared to be an important training method for improving the jerk record. Conclusion: While many training methods have been devised and carried out in the field, 3 types of training (HS, ForceS, WP) for improving Snatch record and 3 types of training (HC, ForceS, BPP) for improving Jerk record was found to be the most influential training method. Since all of them showed a large value of explanatory power by regression analysis, it is considered that this study is meaningful in that it can promote training efficiency by simplifying although there are many types of training for athletes.

ESTABLISHMENT OF CDM PROJECT ADDITIONALITY THROUGH ECONOMIC INDICATORS

  • Kai. Li.;Robert Tiong L. K.;Maria Balatbat ;David Carmichael
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.272-275
    • /
    • 2009
  • Carbon finance is the investment in Greenhouse Gas (GHG) emission reduction projects in developing countries and countries with economies in transition within the framework of the Kyoto Protocol's Clean Development Mechanism (CDM) or Joint Implementation (JI) and with creation of financial instruments, i.e., carbon credits, which are tradable in carbon market. The additional revenue generated from carbon credits will increase the bankability of projects by reducing the risks of commercial lending or grant finance. Meantime, it has also demonstrated numerous opportunities for collaborating across sectors, and has served as a catalyst in bringing climate issues to bear in projects relating to rural electrification, renewable energy, energy efficiency, urban infrastructure, waste management, pollution abatement, forestry, and water resource management. Establishing additionality is essential for successful CDM project development. One of the key steps is the investment analysis. As guided by UNFCCC, financial indicators such as IRR, NPV, DSCR etc are most commonly used in both Option II & Option III. However, economic indicator such as Economic Internal Rate of Return(EIRR) are often overlooked in Option III even it might be more suitable for the project. This could be due to the difficulties in economic analysis. Although Asian Development Bank(ADB) has given guidelines in evaluating EIRR, there are still large amount of works have to be carried out in estimating the economic, financial, social and environmental benefits in the host country. This paper will present a case study of a CDM development of a 18 MW hydro power plant with carbon finance option in central Vietnam. The estimation of respective factors in EIRR, such as Willingness to Pay(WTP), shadow price etc, will be addressed with the adjustment to Vietnam local provincial factors. The significance of carbon finance to Vietnam renewable energy development will also be addressed.

  • PDF

Attention 기법에 기반한 적대적 공격의 강건성 향상 연구 (Improving Adversarial Robustness via Attention)

  • 김재욱;오명교;박래현;권태경
    • 정보보호학회논문지
    • /
    • 제33권4호
    • /
    • pp.621-631
    • /
    • 2023
  • 적대적 학습은 적대적 샘플에 대한 딥러닝 모델의 강건성을 향상시킨다. 하지만 기존의 적대적 학습 기법은 입력단계의 작은 섭동마저도 은닉층의 특징에 큰 변화를 일으킨다는 점을 간과하여 adversarial loss function에만집중한다. 그 결과로 일반 샘플 또는 다른 공격 기법과 같이 학습되지 않은 다양한 상황에 대한 정확도가 감소한다. 이 문제를 해결하기 위해서는 특징 표현 능력을 향상시키는 모델 아키텍처에 대한 분석이 필요하다. 본 논문에서는 입력 이미지의 attention map을 생성하는 attention module을 일반 모델에 적용하고 PGD 적대적학습을수행한다. CIFAR-10 dataset에서의 제안된 기법은 네트워크 구조에 상관없이 적대적 학습을 수행한 일반 모델보다 적대적 샘플에 대해 더 높은 정확도를 보였다. 특히 우리의 접근법은 PGD, FGSM, BIM과 같은 다양한 공격과 더 강력한 adversary에 대해서도 더 강건했다. 나아가 우리는 attention map을 시각화함으로써 attention module이 적대적 샘플에 대해서도 정확한 클래스의 특징을 추출한다는 것을 확인했다.

다양한 청록수소 생산 공정에 대한 경제성 분석 (Economic Comparison of Various Turquoise Hydrogen Production Processes)

  • 이수용;잡반티엔;무자히드 나심;김종환;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.256-266
    • /
    • 2023
  • Hydrogen production can be classified based on the energy source, primary reactor type, and whether or not it emits carbon dioxide. Utilizing color representation proves to be an effective means of expressing these distinctive characteristics. Among the various clean hydrogen production techniques, there has been a growing interest in turquoise hydrogen production, which involves the decomposition of methane or other fossil fuels. This method offers advantages in terms of large-scale production and cost reduction through the sale of solid-carbon byproduct. In this study, an extensive literature review was conducted to select and analyze several promising candidates for turquoise hydrogen production processes. The efficiency and economics of these processes were evaluated using stream data reported in the literature sources. The findings indicate that the levelized cost of hydrogen production (LCOH) is significantly influenced by the sales of byproducts, specifically the solid-carbon and carbon monoxide byproducts.

Estimation of GHG emissions and footprint from Daecheong Reservoir using G-res Tool

  • Min, Kyeongseo;Kim, Dongmin;Chung, Sewoong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.209-209
    • /
    • 2022
  • Reservoirs play a key role in the carbon cycle between terrestrial and marine systems and are pathways that release greenhouse gases(GHGs), CO2, CH4, and N2O, into the atmosphere by decomposing organic matters. Developed countries have been actively conducting research on carbon emission assessment of dam reservoirs for over 10 years under the leadership of UNESCO/IHA, but associated research is very rare in Korea. In particular, the GHGs footprint evaluation, which calculates the change in net carbon emission considering the watershed environment between pre- and post- impoundment, is very important in evaluating the carbon emission of hydroelectric dams. The objective of this study was to estimate the GHG emissions and footprints in Daecheong Reservoir using the G-res Tool, an online platform developed by UNESCO/IHA. The G-res Tool estimates CO2 and CH4 emissions in consideration of diverse pathway fluxes of GHGs from the reservoir and characterizes changes in GHG fluxes over 100 years based on the expected lifetime of the dam. The input required to use the G-res Tool include data related to watersheds, reservoirs, and dams, and most were collected through the government's public portal. As a result of the study, the GHG footprint of Daecheong Reservoir was estimated to be 93 gCO2eq/m2/yr, which is similar to that of other reservoirs around the world in the same climate zone. After impoundment, the CH4 diffusion emission from the reservoir was 73 gCO2eq/m2/yr, also similar to those of the overseas reservoirs, but the CH4 bubbling emission, degassing emission, and CO2 diffusion emissions were 44, 34, 252 gCO2eq/m2/yr, respectively, showing a rather high tendency. Since the dam reservoir carbon footprint evaluation is essential for the Clean Development Mechanism evaluation of hydroelectric power generation, continuous research is needed in the future. In particular, experimental studies that can replace the emission factors obtained from the overseas dam reservoirs currently used in the G-res Tool should be promoted.

  • PDF