• Title/Summary/Keyword: Power circulation

Search Result 404, Processing Time 0.029 seconds

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

Evaluation of Transient Natural Circulation Behavior during Accident in Low Power /Shutdown Condition of YGN Units 3/4

  • Bang, Young-Seok;Kim, Kap;Seul, Kwang-Won;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.458-463
    • /
    • 1997
  • A transient natural circulation behavior during a LOCA at hot-standby operation is evaluated for YGN Units 3/4. The plant initial condition is determined within the EOP limitation as suitable to hot-standby mode and the transient scenario is prepared as relevant to evaluation of transient natural circulation. A 0.4% cold leg break with loss of off-site power is calculated with RELAP5/MOD3.2, whose predictability has been verified for SBLOCA natural circulation test, S-NC-8B. Through one hour transient analysis, it is found that the plant has its own decay heat removal capability by natural circulation following a LOCA, at hot-standby mode. Additional calculation is performed to investigate an effect of HPSI flow on natural circulation.

  • PDF

Scale Down Design on Experiment Facility of the Water/Steam Receiver for Solar Power Tower (타워형 태양열 흡수기의 열전달 특성 실험장치에 관한 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Yong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.676-679
    • /
    • 2007
  • This paper describes an experiment facility to measure the circulation characteristics of a water/steam receiver at various heat fluxes. The natural circulation type receiver was considered in this study. The experiment facility was designed to satisfy circulation balance with an appropriate scale down. As a result, riser tube inner diameter was 7.4 mm and water circulation was 0.319 kg/s. Downcomer tube inner diameter by circulation balance was 9.52 mm and the quality was from 0 to 0.23.

  • PDF

Compound CVT with K-H-V Differential Gear and V-belt Drive

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • Continuously variable transmission (CVT) mechanisms combine the functions of a K-H-V type differential gear unit and a V-belt type continuously variable unit (CVU). For the 24 different mechanisms, 12 of them are power circulation modes while the other 12 are power split modes. Some useful theoretical formulas related to speed ratio, power flow and efficiency were derived and analyzed. These mechanisms have many advantages: they decrease CVT size and weight, increase overall efficiency, extend speed ratio range, and generate geared neutral. Compound CVTs were developed by combining the power circulation mode and power split mode, which can offer backward motion, geared neutral, underdrive and overdrive.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Performance Analysis of Compound CVTs with a 2K-HI (2K-HI 형식 복합형 무단변속기의 성능실험)

  • Park J.M.;Kim Y.S.;Lee S.H.;Choi S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1345-1348
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

Design and Performance Verification of Compound CVTs with 2K-H I type Differential Gear

  • Kim Yeon-Su;Park Jae-Min;Choi Sang-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.770-781
    • /
    • 2006
  • This paper defined design constraints for the compound CVTs (continuously variable trans-missions) by combining power-circulation-mode CVTs and power-split-mode CVTs, which were proposed for connecting 2K-H I-type differential gear to V-belt-type CVU (Continuously Variable Unit). The design constraints are the necessary and sufficient conditions to avoid geometrical interferences among elements in the compound CVTs, and to guarantee smooth assembly between the power-circulation-mode CVT and power-split-mode CVT Two com-pound CVTs were designed and manufactured in accordance with the design constraints. With these compound CVTs, theoretical analysis and performance experiments were conducted. The results showed that the design constraints were valid and effective design method, and that the designed compound CVTs had the improved performance.

Performance Efficiency of Compound CVTs with a 2K-H II (2K-H II 형식 복합형 무단변속기의 효율실험)

  • Park J.M.;Kim Y.S.;Lee S.H.;Choi S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.670-673
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H II differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Experiment investigation on flow characteristics of open natural circulation system

  • Qi, Xiangjie;Zhao, Zichen;Ai, Peng;Chen, Peng;Sun, Zhongning;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1851-1859
    • /
    • 2022
  • Experimental research on flow characteristics of open natural circulation system was performed, to figure out the mechanism of the open natural circulation behaviors. The influence factors, such as the heating power, the inlet subcooled and the level of cooling tank on the flow characteristics of the system were examined. It was shown that within the scope of the experimental conditions, there are five flow types: single-phase stable flow, flash and geyser coexisting unstable flow, flash stable flow, flash unstable flow, and flash and boiling coexisting unstable flow. The geyser flow in flash and geyser coexisting unstable flow is different from classic geysers flow. The flow oscillation period and amplitude of the former are more regular, is a newly discovered flow pattern. By drawing the flow instability boundary diagram and sorting out the flow types, it is found that the two-phase unstable flow is mainly characterized by boiling and flash, which determine the behavior of open natural circulation respectively or jointly. Moreover, compared with full liquid level system, non-full liquid level system is more prone to boiling phenomenon, and the range of heat flux density and undercooling degree corresponding to unstable flow is larger.