• Title/Summary/Keyword: Power characteristics

Search Result 16,280, Processing Time 0.046 seconds

Static Characteristics Analysis of PWM Cuk AC-AC Converter for Power Quality Improvement of Custom Power (Custom Power의 전력품질 향상을 위한 PWM Cuk AC-AC 컨버터의 정적 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.513-516
    • /
    • 2004
  • In this paper, a PWM Cuk AC-AC converter for power quality improvement of custom power is presented. The PWM Cuk AC-AC converter that is used in VVCF applications such as AC line conditioner, phase shifter is modelled by using complex circuit DQ transformation whereby the static characteristics equations such as voltage gain and power factor is analytically obtained. Finally, the PSIM simulation show the validity of the modelling and analysis.

  • PDF

Optimal Design of Trench Power MOSFET for Mobile Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.195-198
    • /
    • 2017
  • This research analyzed the electrical characteristics of an 80 V optimal trench power MOSFET (metal oxide field effect transistor) for mobile applications. The power MOSFET is a fast switching device in fields with low voltage(<100 V) such as mobile application. Moreover, the power MOSFET is a major carrier device that is not minor carrier accumulation when the device is turned off. We performed process and device simulation using TCAD tools such as MEDICI and TSUPREM. The electrical characteristics of the proposed trench gate power MOSFET such as breakdown voltage and on resistance were compared with those of the conventional power MOSFET. Consequently, we obtained breakdown voltage of 100 V and low on resistance of $130m{\Omega}$. The proposed power MOSFET will be used as a switch in batteries of mobile phones and note books.

Current Characteristics of CMOS device Broken by Intentional High Power Electromagnetic Wave (의도 고출력 전자파에 의해 오동작 되는 CMOS소자의 전류특성)

  • Hwang, Sun-Mook;Hong, Joo-Il;Han, Seung-Mook;Park, Shin-Woo;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1516-1517
    • /
    • 2007
  • This paper investigated the breakdown effect of the CMOS device by impact of high power electromagnetic wave. The experiments employed a waveguide to study the current characteristics of CMOS device broken by high power electromagnetic wave. The CMOS device were composed of a LED drive circuit for visual discernment. Also CMOS device broken by high power electromagnetic wave was observed by power current. The CMOS device were broke by high power electromagnetic wave at about 10 kV/m and when power current is 75 mA. Based on the result, CMOS devices should show plan to protect the CMOS devices by high power electromagnetic wave. And the database from this experiment should provide the basis for future investigation.

  • PDF

Operation Technology of PV-ESS Integrated Module for DC Micro Grid with Constant Power Tracking Algorithm (일정 전력 추종 알고리즘이 적용된 DC 마이크로 그리드용 PV-ESS 통합형 모듈의 운영 기술)

  • Ryu, Kyung;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.433-441
    • /
    • 2020
  • This study proposes a constant power tracking algorithm to compensate for the intermittent characteristics of Photovoltaic connected to a DC micro grid. A PV-ESS integrated module in which distributed ESS is additionally connected is utilized for the proposed algorithm. PV performs P&O MPPT control at all times. To supplement the intermittent characteristics of PV, the proposed constant power tracking algorithm maintains constant power by operating the distributed ESS of the PV-ESS integrated module in accordance with the output state of the PV. By performing PSIM simulation and an experiment, this study verifies the performance of the integrated module of PV-ESS for DC micro grids applying the constant power tracking algorithm.

Analysis of Power Generation Characteristics of Agricultural Potovoltaic Systems (농업 태양광의 발전 특성 분석)

  • Sunho, Yu;Eui-Chan, Lee;Seungwoo, Son;Bongsuck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2022
  • The transition to renewable energy, especially the expansion of photovoltaic (PV) generation, has become a global megatrend that can no longer be reserved. However, since the site for PV is limited, it is necessary to use the land efficiently. As an alternative, the concept of utility scale agricultural PV(UAPV) is a technology that continues farming in the lower part and installs PV in the upper part of farmland to efficiently use the land. Therefore, for UAPV, the growth of crops in the lower part and the optimal operation of PV in the upper part are important. In this, we analyze the characteristics of the upper PV generation system in the UAPV based on the empirical results under various conditions, and propose future research directions of the UAPV.

Electrical Automatic Control System Based on the Internet of Things

  • Jiyong, Jin
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.784-793
    • /
    • 2022
  • Grid-connected distributed power generation has been widely used in green energy generation. However, due to the distributed characteristics, distributed power generation is difficult to be dynamically allocated and monitored in the electrical control process. In order to solve this problem, this research combined the Internet of Things (IoT) with the automatic control system of electrical engineering to improve the control strategy of the power grid inverter according to the characteristics of the IoT system. In the research, a connection system of the power grid inverter and the IoT controller were designed, and the application effect was tested by simulation experiments. The results showed that the power grid inverter had strong tracking control ability for current and power control. Meanwhile, the electrical control system of the IoT could independently and dynamically control the three-phase current and power. The given value was reached within 50 ms after the step signal was input, which could protect the power grid from being affected by the current. The overall system could realize effective control, dynamic control and protective control.

Research on flow characteristics in supercritical water natural circulation: Influence of heating power distribution

  • Ma, Dongliang;Zhou, Tao;Feng, Xiang;Huang, Yanping
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1079-1087
    • /
    • 2018
  • There are many parameters that affect the natural circulation flow, such as height difference, heating power size, pipe diameter, system pressure and inlet temperature and so on. In general analysis the heating power is often regarded as a uniform distribution. The ANSYS-CFX numerical analysis software was used to analyze the flow heat transfer of supercritical water under different heating power distribution conditions. The distribution types of uniform, power increasing, power decreasing and sine function are investigated. Through the analysis, it can be concluded that different power distribution has a great influence on the flow of natural circulation if the total power of heating is constant. It was found that the peak flow of supercritical water natural circulation is maximal when the distribution of heating power is monotonically decreasing, minimal when it is monotonically increasing, and moderate at uniform or the sine type of heating. The simulation results further reveal the supercritical water under different heat transfer conditions on its flow characteristics. It can provide certain theory reference and system design for passive residual heat removal system about supercritical water.

Consumed-Power and Load Characteristics of Potato Harvesting Operation in Dry Field (건답에서 감자수확작업의 소요동력 및 부하특성)

  • Lee, Ju-Yeon;Hwang, Seok-Joon;Nam, Ju-Seok;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • This study analyzed the load and the consumed power characteristics of a potato harvesting operation in a dry field. The potato harvesting operation was performed using an underground crop harvester mounted on an agricultural tractor with a rated engine power of 23.7 kW. The rotational speeds and the torque of the engine output shaft, rear axle, and power take-off (PTO) shaft were measured under various working conditions. The load spectrum and the consumed power were analyzed using the measured data. The results show that the consumed power of the rear axle increased as the working speed increased, while that of the PTO shaft decreased. The consumed power of the engine output shaft showed a similar trend with that of the PTO shaft, but the torque deviation was larger in the load spectrum. The results of previous studies were used to compare herein the consumed power and the load characteristics of the harvesting, rotary, and plow operations in a dry field. PTO and tractive power were highly consumed in the plow and rotary operations, respectively. The consumed power of the PTO shaft and the rear axle in the harvesting operation were 29-41% and 18-23% of the engine power, respectively. Compared to those in the rotary and plow operations, the engine power was relatively evenly distributed to the PTO shaft and rear axle in the harvesting operation.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

Effective Impulse Impedances of Deeply Driven Grounding Electrodes

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong;Chang, Keun-Chul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.207-214
    • /
    • 2004
  • This paper presents the characteristics of transient and effective impulse impedances for deeply driven grounding electrodes used in soil with high resistivity or in downtown areas. The laboratory test associated with the time domain performance of grounding piles subjected to a lightning stroke current has been carried out using an actual-sized model grounding system. The ground impedances of the deeply driven ground rods and grounding pile under impulse currents showed inductive characteristics, and the effective impulse ground impedance owing to the inductive component is higher than the power frequency ground impedance. Both power frequency ground impedance and effective impulse ground impedance decrease upon increasing the length of the model grounding electrodes. Furthermore, the effective impulse ground impedances of the deeply driven grounding electrodes are significantly amplified in impulse currents with a rapid rise time. The reduction of the power frequency ground impedance is decisive to improve the impulse impedance characteristics of grounding systems.