• Title/Summary/Keyword: Power brokerage market

Search Result 6, Processing Time 0.019 seconds

Analysis of Factors Driving the Participation of Small Scale Renewable Power Providers in the Power Brokerage Market (소규모 재생발전사업자의 중개시장참여 촉진요인 분석)

  • Li, Dmitriy;Bae, Jeong Hwan
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.32-42
    • /
    • 2022
  • Rapid spread of intermittent renewable energy has amplified the instability and uncertainty of power systems. The Korea Power Exchange (KPX) promoted efficient management by opening the power brokerage market in 2019. By combining small-scale intermittent renewable energy with a flexible facility through the power brokerage market, the KPX aims to develop a virtual power plant system that will allow the conversion of existing intermittent renewable energy into collective power plants. However, the participation rate of renewable power owners in the power brokerage market is relatively low because other markets such as the small solar power contract market or the Korea Electric Power Corporation power purchase agreement are more profitable. In this study, we used a choice experiment to determine the attributes affecting the participation rate in the power brokerage market for 113 renewable power owners and estimate the value of the power brokerage market. According to the estimation results, a low smart meter installation cost, low profit variations, long contract periods, and few clearances increased the probability of participation. Moreover, the average value of the power brokerage market was estimated to be 2.63 million KRW per power owner.

Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN (태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석)

  • Hong, Jeong-Jo;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In order to reduce greenhouse gases, the main culprit of global warming, the United Nations signed the Climate Change Convention in 1992. Korea is also pursuing a policy to expand the supply of renewable energy to reduce greenhouse gas emissions. The expansion of renewable energy development using solar power led to the expansion of wind power and solar power generation. The expansion of renewable energy development, which is greatly affected by weather conditions, is creating difficulties in managing the supply and demand of the power system. To solve this problem, the power brokerage market was introduced. Therefore, in order to participate in the power brokerage market, it is necessary to predict the amount of power generation. In this paper, the prediction system was used to analyze the Yonchuk solar power plant. As a result of applying solar insolation from on-site (Model 1) and the Korea Meteorological Administration (Model 2), it was confirmed that accuracy of Model 2 was 3% higher. As a result of comparative analysis of the DNN and RNN models, it was confirmed that the prediction accuracy of the DNN model improved by 1.72%.

The Power Brokerage Trading System for Efficient Management of Small-Scale Distributed Energy-Resources (소규모 분산에너지자원의 효율적인 관리를 위한 전력중개거래시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Lee, Woo;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.735-742
    • /
    • 2021
  • Recently, renewable energy-related power generation facilities have been surging due to the government's "Renewable Energy 3020", "Green New Deal", "2050 Carbon Neutrality" and "K-RE100" policies. Most renewable energy facilities are small and distributed, making it difficult to manage efficiently, and small distributed resources less than 1MW are having a hard time with participating in the market due to the limited sales and avoidance of trading. In particular, the intermittency of renewable energy has a significant impact on the stability of the power grid. The government is seeking to address volatility and intermittency issues through 'small distributed resource brokerage trading, and to expand the systematic resourceization and acceptability of heterogeneous large and small distributed resources. In this work, we intend to apply an AI-based power generation prediction model to a distributed resource brokerage trading system so that it can be utilized as a foundation platform for pioneering new energy business markets.

Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy (통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석)

  • Lee, Jeong-In;Park, Wan-Ki;Lee, Il-Woo;Kim, Sang-Ha
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • Korea is pursuing a plan to switch and expand energy sources with a focus on renewable energy with the goal of becoming carbon neutral by 2050. As the instability of energy supply increases due to the intermittent nature of renewable energy, accurate prediction of the amount of renewable energy generation is becoming more important. Therefore, the government has opened a small-scale power brokerage market and is implementing a system that pays settlements according to the accuracy of renewable energy prediction. In this paper, a prediction model was implemented using a statistical model and an artificial intelligence model for the prediction of solar power generation. In addition, the results of prediction accuracy were compared and analyzed, and the revenue from the settlement amount of the renewable energy generation forecasting system was estimated.

Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve (Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델)

  • Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

A Development of VPP Platform for the Efficient Utilization of Distributed Renewable Energy Resources (분산 재생에너지의 효율적 활용을 위한 가상발전소(VPP) 플랫폼 개발에 관한 연구)

  • Cho, Young-Hyeok;Baek, Seung-Yup;Choi, Won-Yong;Jeong, Dae-Yul
    • The Journal of Information Systems
    • /
    • v.27 no.2
    • /
    • pp.95-114
    • /
    • 2018
  • Purpose The recent concern over environmental problems such as greenhouse gas emission and fine dust contributes increasing interest in renewable energies. However the intrinsic characteristics of renewable energies, intermittent and stochastic generation, might cause serious problems to the stability and controllability of power grid. Therefore countermeasures such as virtual power plant (VPP) must be prepared in advance of the spread of uncontrollable distributed renewable energy resources to be one of major energy sources. Design/methodology/approach This study deals with the design concept of the VPP platform. we proposed as a technology solution for achieving the stability of power grid by guaranteeing a single power profile combining multiple distributed power sources with ICT. The core characteristics of VPP should be able to participate in the grid operation by responding to operation instructions from the system operator, KPX, as well as the wholesale electricity market. Findings Therefore this study includes energy storage device(ESS) as a controllable component as well as renewable energy resources such as photovoltaic and wind power generation. Based on this configuration, we discussed core element technologies of VPP and protype design of VPP solution platform according to system requirements. In the proposed solution platform, UX design for the integrated control center and brokerage system were included as well as ancillary service function to respond to KPX's operation instruction with utilizing the capability of ESS. In addition, a simulator was suggested to verify the VPP operations.