• Title/Summary/Keyword: Power Turbine

Search Result 2,628, Processing Time 0.033 seconds

A Study on the Discrepancies of Gas Measurement and the Solution Measures between Suppliers and Consumers in South Korea (도시(都市)가스 계량(計量) 편차(偏差) 및 해소방안(解消方案)에 관(關)한 소고(小考))

  • Park, Sang-Chul;Bang, Sun-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • KOGAS, established in 1983 by law to ensure stable gas supply to the public, is responsible for the wholesale distribution to 30 city gas companies that deal with the retail distribution of natural gas in their geographic areas. The gas imported by KOGAS is measured by checking the level difference of LNG shipped in tankers before and after unloading. The analysis of gas composition is essential because the imported gas price is determined by its calorific value. The turbine meter is widely used for measuring the gas sold to city gas companies. Unlike the metering system for power plants, there is no gas chromatograph since the custody transfer of gas to the city gas companies is not billed by calorific value, but by volume basis. The gas quantity that a city gas company has bought from KOGAS is not equal to the quantity that the company sold to its customers. There have been some discrepancies between the wholesale gas meter readouts and retail ones due to some inherent errors of meters and some operational issues of the meters. This paper investigates the controversies regarding the real quantity of gas between distributors and consumers. It will discus and suggest desirable policies, both technically and economically, in order to solve the discrepancies of gas measurement.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF

A Study on GA-based Optimized Polynomial Neural Networks and Its Application to Nonlinear Process (유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 연구 및 비선형 공정으로의 응용)

  • Kim Wan-Su;Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.846-851
    • /
    • 2005
  • In this paper, we propose Genetic Algorithms(GAs)-based Optimized Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional neural networks and can be generated in a dynamic manner. As each node of PNN structure, we use several types of high-order polynomial such as linear, quadratic and modified quadratic, and it is connected as various kinds of multi-variable inputs. The conventional PNN depends on the experience of a designer that select the number of input variables, input variable and polynomial type. Therefore it is very difficult to organize optimized network. The proposed algorithm leads to identify and select the number of input variables, input variable and polynomial type by using Genetic Algorithms(GAs). The aggregate performance index with weighting factor is proposed as well. The study is illustrated with tile NOx omission process data of gas turbine power plant for application to nonlinear process. In the sequel the proposed model shows not only superb predictability but also high accuracy in comparison to the existing intelligent models.

A Study on the Certification Standard Analysis and Safety Assurance Method for Electric Propulsion System of the Urban eVTOL Aircraft (도심용 eVTOL 항공기 전기추진시스템 기준 분석 및 안전성 확보 방안에 관한 연구)

  • Kim, Juyoung;Yoo, Minyoung;Gwon, Hyukrok;Gil, Ginam;Gong, Byeongho;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.42-51
    • /
    • 2022
  • An eVTOL aircraft, which is required to operate with low pollution/low noise in urban environments, mostly use battery-powered electric propulsion systems as power sources, not traditional propulsion systems such as reciprocating or turbine engines. Accordingly, certification preparation for the electric propulsion system and securing the safety of the electric propulsion system, are important issues. In the U.S., special technical standards equivalent to FAR Part 33 were issued to certify electric engines, and in Europe, various special conditions were established to certify electric propulsion systems. Thus, in Korea, the technical standards for the electric propulsion system for eVTOL aircraft must also be prepared in line with the U.S. and Europe. In this paper, SC E-19, the technical standard of the electric/hybrid propulsion system (EHPS) in special conditions, was analyzed. Additionally, securing the safety of the electric propulsion system of the aircraft are proposed, through the collaboration of SC E-19 technical standards with the existing aircraft safety evaluation procedure ARP 4761. Finally, through a case study of the Ehang 184 electric propulsion system, it has been confirmed that the proposed safety assurance method is applicable at the aircraft level.

Experimental Study on Helical Turbine Efficiency for Tidal Current Power Plant (조류 발전용 헬리컬 수차의 효율에 대한 실험적 연구)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dai;Park, Woo-Sun;Park, Jin-Soon;Yi, Jin-Hak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.530-534
    • /
    • 2006
  • 조류발전은 조류 유속이 빠른 곳에 수차발전기를 설치하여 해수의 운동에너지로부터 전기를 생산하는 발전방식이다. 2001년부터 해양연구원에서는 울돌목의 우수한 조류발전 개발 여건을 바탕으로 조류에너지 실용화 기술을 개발하고 있다. 본 연구에서는 조류발전 시스템에 사용되는 헬리컬 수차의 효율을 현장실험을 바탕으로 판단하고자 하였다. 현장실험을 위하여 지름 2.2 m, 높이 2.5 m의 수차를 제작하고, 울돌목 협수로의 한 쪽 면에 쟈켓구조물을 설치하여 수차를 거치한다. 수차가 회전함에 따라 회전봉에 일정 마찰을 주어 토크와 RPM을 측정하고, 함께 측정된 유속자료를 이용하여 수차를 효율을 산정한다. 유속-수차효율, TSR(수차의 날개속도와 유속의 비)-수차효율의 상관관계로 실험결과를 고찰하였다. 1중 날개 수차인 경우에 유속 1.4에서 2.6 m/s 사이에서 최대효율이 30 - 35 % 정도였고, 2중 날개 수차에 대한 실험에서는 유속 1.4에서 2.6 m/s 사이에서 최대수차효율이 25 - 35 % 사이임을 알 수 있었다. TSR과 최대수차효율의 상관관계는 실험 case별로 조금씩 다르다. 전체적으로 1중 날개의 경우가 최대수차효율에서 2중 날개보다 TSR 값이 조금 큰 경향을 나타냄을 알 수 있다. 이것은 1중 날개가 2중 날개보다 가벼워 좀 더 큰 RPM을 발생시켜서 나타난 현상으로 생각된다. 현재의 실험결과들을 이용하여 TSR과 최대수차효율을 상관관계를 나타내는 모델식을 도출하였다. 현장시험결과를 종합하면, 현장조류발전 시설이 최소 600 kW의 전력이 생산되기 위해서는 지름 3 m, 높이 3.6 m 인 수차 3개가 하나의 축에 설치되어야하는 것으로 계산되었다. 정격유속이 4.8 m/s이고 수차의 지름이 3m 라면, 최적 전력발생시의 RPM은 1중 날개의 경우 79이고 2중 날개의 경우는 63정도임을 추정할 수 있었다.촬영하여 실시간으로 전송하기 때문에 홍수시 하천 상황에 대한 모니터링 목적으로 사용될 수 있다. 영상수위계는 우물통 등을 이용하는 기존 방법과 비교하여 구조물이 필요 없어 설치 비용이 저렴하고, 영상에 의한 하천 모니터링 기능을 자체적으로 가지고 있기 때문에 효율적이라고 할 수 있다.따른 4개의 평가기준과 26개의 평가속성으로 이루어진 2단계 기술가치평가 모형을 구축하였으며 2개의 개별기술에 대한 시범적용을 실행하였다.하는 것으로 추정되었다.면으로의 월류량을 산정하고 유입된 지표유량에 대해서 배수시스템에서의 흐름해석을 수행하였다. 그리고, 침수해석을 위해서는 2차원 침수해석을 위한 DEM기반 침수해석모형을 개발하였고, 건물의 영향을 고려할 수 있도록 구성하였다. 본 연구결과 지표류 유출 해석의 물리적 특성을 잘 반영하며, 도시지역의 복잡한 배수시스템 해석모형과 지표범람 모형을 통합한 모형 개발로 인해 더욱 정교한 도시지역에서의 홍수 범람 해석을 실시할 수 있을 것으로 판단된다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험 지점 파악 및 주민대피지도 구축 등에 활용될 수 있을 것으로 판단된다. 있을 것으로 판단되었다.4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주식시장에 적합한 거래전략은 반전거래전

  • PDF

Performance Test of a 75-tonf Rocket Engine Turbopump (75톤급 액체로켓엔진용 터보펌프 실매질 성능시험)

  • Jeong, Eunhwan;Kwak, Hyun-Duck;Kim, Dae-Jin;Kim, Jin-Sun;Noh, Jun-Gu;Park, Min-Ju;Park, Pyun-Goo;Bae, Jun-Hwan;Shin, Ju-Hyun;Wang, Seong-Won;Yoon, Suck-Hwan;Lee, Hanggi;Jeon, Seong-Min;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Seong-Lyong;Kim, Seung-Han;Woo, Seong-Phil;Han, Yeong-Min;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • Performance tests of a 75-tonf liquid rocket engine turbopump were conducted. The performance of sub-components - two pumps and a turbine - and their power matching were measured and examined firstly near the design speed under the LN2 and kerosene environment. In the real propellant - LOX and kerosene - environment tests, design and off-design performance of turbopump were fully verified in regime of the rocket engine operation. During the off-design performance tests, turbopump running time was set longer than the engine operating time to verify the pump operability and set the pump inlet pressure close to design NPSHr to investigate pump suction capability in parallel. It has been found that developed-turbopump satisfied all of the engine required performances.